sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(319, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([42,60]))
pari:[g,chi] = znchar(Mod(20,319))
Modulus: | 319 | |
Conductor: | 319 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 35 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ319(16,⋅)
χ319(20,⋅)
χ319(25,⋅)
χ319(36,⋅)
χ319(49,⋅)
χ319(53,⋅)
χ319(81,⋅)
χ319(82,⋅)
χ319(103,⋅)
χ319(136,⋅)
χ319(141,⋅)
χ319(152,⋅)
χ319(168,⋅)
χ319(169,⋅)
χ319(170,⋅)
χ319(181,⋅)
χ319(190,⋅)
χ319(223,⋅)
χ319(256,⋅)
χ319(257,⋅)
χ319(268,⋅)
χ319(284,⋅)
χ319(306,⋅)
χ319(313,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(233,89) → (e(53),e(76))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ319(20,a) |
1 | 1 | e(3516) | e(353) | e(3532) | e(359) | e(3519) | e(3517) | e(3513) | e(356) | e(75) | 1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)