Properties

Label 319.20
Modulus $319$
Conductor $319$
Order $35$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([42,60]))
 
pari: [g,chi] = znchar(Mod(20,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(35\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.s

\(\chi_{319}(16,\cdot)\) \(\chi_{319}(20,\cdot)\) \(\chi_{319}(25,\cdot)\) \(\chi_{319}(36,\cdot)\) \(\chi_{319}(49,\cdot)\) \(\chi_{319}(53,\cdot)\) \(\chi_{319}(81,\cdot)\) \(\chi_{319}(82,\cdot)\) \(\chi_{319}(103,\cdot)\) \(\chi_{319}(136,\cdot)\) \(\chi_{319}(141,\cdot)\) \(\chi_{319}(152,\cdot)\) \(\chi_{319}(168,\cdot)\) \(\chi_{319}(169,\cdot)\) \(\chi_{319}(170,\cdot)\) \(\chi_{319}(181,\cdot)\) \(\chi_{319}(190,\cdot)\) \(\chi_{319}(223,\cdot)\) \(\chi_{319}(256,\cdot)\) \(\chi_{319}(257,\cdot)\) \(\chi_{319}(268,\cdot)\) \(\chi_{319}(284,\cdot)\) \(\chi_{319}(306,\cdot)\) \(\chi_{319}(313,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 35 polynomial

Values on generators

\((233,89)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(20, a) \) \(1\)\(1\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{3}{35}\right)\)\(e\left(\frac{32}{35}\right)\)\(e\left(\frac{9}{35}\right)\)\(e\left(\frac{19}{35}\right)\)\(e\left(\frac{17}{35}\right)\)\(e\left(\frac{13}{35}\right)\)\(e\left(\frac{6}{35}\right)\)\(e\left(\frac{5}{7}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(20,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(20,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(20,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(20,·)) \;\) at \(\; a,b = \) e.g. 1,2