Properties

Label 3192.2141
Modulus $3192$
Conductor $3192$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,9,9,5]))
 
pari: [g,chi] = znchar(Mod(2141,3192))
 

Basic properties

Modulus: \(3192\)
Conductor: \(3192\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3192.hj

\(\chi_{3192}(629,\cdot)\) \(\chi_{3192}(965,\cdot)\) \(\chi_{3192}(1637,\cdot)\) \(\chi_{3192}(2141,\cdot)\) \(\chi_{3192}(2309,\cdot)\) \(\chi_{3192}(3149,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((799,1597,2129,913,1009)\) → \((1,-1,-1,-1,e\left(\frac{5}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3192 }(2141, a) \) \(-1\)\(1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{11}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3192 }(2141,a) \;\) at \(\;a = \) e.g. 2