Properties

Label 352.59
Modulus $352$
Conductor $352$
Order $40$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,5,8]))
 
pari: [g,chi] = znchar(Mod(59,352))
 

Basic properties

Modulus: \(352\)
Conductor: \(352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 352.bd

\(\chi_{352}(3,\cdot)\) \(\chi_{352}(27,\cdot)\) \(\chi_{352}(59,\cdot)\) \(\chi_{352}(75,\cdot)\) \(\chi_{352}(91,\cdot)\) \(\chi_{352}(115,\cdot)\) \(\chi_{352}(147,\cdot)\) \(\chi_{352}(163,\cdot)\) \(\chi_{352}(179,\cdot)\) \(\chi_{352}(203,\cdot)\) \(\chi_{352}(235,\cdot)\) \(\chi_{352}(251,\cdot)\) \(\chi_{352}(267,\cdot)\) \(\chi_{352}(291,\cdot)\) \(\chi_{352}(323,\cdot)\) \(\chi_{352}(339,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.0.96430685261162182749113906515642066253992366248338958954046471967872161601814528.1

Values on generators

\((287,133,321)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 352 }(59, a) \) \(-1\)\(1\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{5}{8}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 352 }(59,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 352 }(59,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 352 }(59,·),\chi_{ 352 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 352 }(59,·)) \;\) at \(\; a,b = \) e.g. 1,2