Basic properties
Modulus: | \(361\) | |
Conductor: | \(361\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(171\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 361.k
\(\chi_{361}(4,\cdot)\) \(\chi_{361}(5,\cdot)\) \(\chi_{361}(6,\cdot)\) \(\chi_{361}(9,\cdot)\) \(\chi_{361}(16,\cdot)\) \(\chi_{361}(17,\cdot)\) \(\chi_{361}(23,\cdot)\) \(\chi_{361}(24,\cdot)\) \(\chi_{361}(25,\cdot)\) \(\chi_{361}(35,\cdot)\) \(\chi_{361}(36,\cdot)\) \(\chi_{361}(42,\cdot)\) \(\chi_{361}(43,\cdot)\) \(\chi_{361}(44,\cdot)\) \(\chi_{361}(47,\cdot)\) \(\chi_{361}(55,\cdot)\) \(\chi_{361}(61,\cdot)\) \(\chi_{361}(63,\cdot)\) \(\chi_{361}(66,\cdot)\) \(\chi_{361}(73,\cdot)\) \(\chi_{361}(74,\cdot)\) \(\chi_{361}(80,\cdot)\) \(\chi_{361}(81,\cdot)\) \(\chi_{361}(82,\cdot)\) \(\chi_{361}(85,\cdot)\) \(\chi_{361}(92,\cdot)\) \(\chi_{361}(93,\cdot)\) \(\chi_{361}(100,\cdot)\) \(\chi_{361}(101,\cdot)\) \(\chi_{361}(104,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{171})$ |
Fixed field: | Number field defined by a degree 171 polynomial (not computed) |
Values on generators
\(2\) → \(e\left(\frac{151}{171}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 361 }(196, a) \) | \(1\) | \(1\) | \(e\left(\frac{151}{171}\right)\) | \(e\left(\frac{127}{171}\right)\) | \(e\left(\frac{131}{171}\right)\) | \(e\left(\frac{148}{171}\right)\) | \(e\left(\frac{107}{171}\right)\) | \(e\left(\frac{26}{57}\right)\) | \(e\left(\frac{37}{57}\right)\) | \(e\left(\frac{83}{171}\right)\) | \(e\left(\frac{128}{171}\right)\) | \(e\left(\frac{4}{57}\right)\) |