Properties

Label 3848.1205
Modulus 38483848
Conductor 38483848
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3848, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,12,11]))
 
pari: [g,chi] = znchar(Mod(1205,3848))
 

Basic properties

Modulus: 38483848
Conductor: 38483848
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3848.ib

χ3848(965,)\chi_{3848}(965,\cdot) χ3848(1101,)\chi_{3848}(1101,\cdot) χ3848(1205,)\chi_{3848}(1205,\cdot) χ3848(2213,)\chi_{3848}(2213,\cdot) χ3848(2245,)\chi_{3848}(2245,\cdot) χ3848(3149,)\chi_{3848}(3149,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(2887,1925,1185,2185)(2887,1925,1185,2185)(1,1,e(23),e(1118))(1,-1,e\left(\frac{2}{3}\right),e\left(\frac{11}{18}\right))

First values

aa 1-11133557799111115151717191921212323
χ3848(1205,a) \chi_{ 3848 }(1205, a) 1111e(118)e\left(\frac{1}{18}\right)e(59)e\left(\frac{5}{9}\right)e(89)e\left(\frac{8}{9}\right)e(19)e\left(\frac{1}{9}\right)1-1e(1118)e\left(\frac{11}{18}\right)e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)e(1718)e\left(\frac{17}{18}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ3848(1205,a)   \chi_{ 3848 }(1205,a) \; at   a=\;a = e.g. 2