Properties

Label 3872.3503
Modulus $3872$
Conductor $968$
Order $110$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,55,34]))
 
pari: [g,chi] = znchar(Mod(3503,3872))
 

Basic properties

Modulus: \(3872\)
Conductor: \(968\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{968}(115,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3872.bx

\(\chi_{3872}(15,\cdot)\) \(\chi_{3872}(47,\cdot)\) \(\chi_{3872}(207,\cdot)\) \(\chi_{3872}(335,\cdot)\) \(\chi_{3872}(367,\cdot)\) \(\chi_{3872}(399,\cdot)\) \(\chi_{3872}(559,\cdot)\) \(\chi_{3872}(687,\cdot)\) \(\chi_{3872}(719,\cdot)\) \(\chi_{3872}(751,\cdot)\) \(\chi_{3872}(911,\cdot)\) \(\chi_{3872}(1039,\cdot)\) \(\chi_{3872}(1071,\cdot)\) \(\chi_{3872}(1103,\cdot)\) \(\chi_{3872}(1263,\cdot)\) \(\chi_{3872}(1391,\cdot)\) \(\chi_{3872}(1423,\cdot)\) \(\chi_{3872}(1615,\cdot)\) \(\chi_{3872}(1743,\cdot)\) \(\chi_{3872}(1807,\cdot)\) \(\chi_{3872}(1967,\cdot)\) \(\chi_{3872}(2095,\cdot)\) \(\chi_{3872}(2127,\cdot)\) \(\chi_{3872}(2159,\cdot)\) \(\chi_{3872}(2319,\cdot)\) \(\chi_{3872}(2479,\cdot)\) \(\chi_{3872}(2511,\cdot)\) \(\chi_{3872}(2799,\cdot)\) \(\chi_{3872}(2831,\cdot)\) \(\chi_{3872}(2863,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((1695,485,2785)\) → \((-1,-1,e\left(\frac{17}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 3872 }(3503, a) \) \(-1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{41}{110}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{79}{110}\right)\)\(e\left(\frac{63}{110}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{3}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3872 }(3503,a) \;\) at \(\;a = \) e.g. 2