from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([55,12]))
pari: [g,chi] = znchar(Mod(202,403))
Basic properties
Modulus: | \(403\) | |
Conductor: | \(403\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 403.ce
\(\chi_{403}(2,\cdot)\) \(\chi_{403}(33,\cdot)\) \(\chi_{403}(97,\cdot)\) \(\chi_{403}(128,\cdot)\) \(\chi_{403}(132,\cdot)\) \(\chi_{403}(163,\cdot)\) \(\chi_{403}(171,\cdot)\) \(\chi_{403}(188,\cdot)\) \(\chi_{403}(202,\cdot)\) \(\chi_{403}(219,\cdot)\) \(\chi_{403}(314,\cdot)\) \(\chi_{403}(318,\cdot)\) \(\chi_{403}(345,\cdot)\) \(\chi_{403}(349,\cdot)\) \(\chi_{403}(357,\cdot)\) \(\chi_{403}(388,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((249,313)\) → \((e\left(\frac{11}{12}\right),e\left(\frac{1}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 403 }(202, a) \) | \(-1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)