sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([55,12]))
pari:[g,chi] = znchar(Mod(202,403))
Modulus: | 403 | |
Conductor: | 403 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ403(2,⋅)
χ403(33,⋅)
χ403(97,⋅)
χ403(128,⋅)
χ403(132,⋅)
χ403(163,⋅)
χ403(171,⋅)
χ403(188,⋅)
χ403(202,⋅)
χ403(219,⋅)
χ403(314,⋅)
χ403(318,⋅)
χ403(345,⋅)
χ403(349,⋅)
χ403(357,⋅)
χ403(388,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(249,313) → (e(1211),e(51))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ403(202,a) |
−1 | 1 | e(6043) | e(1513) | e(3013) | i | e(127) | e(6041) | e(203) | e(1511) | e(3029) | e(601) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)