sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(403, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([25,32]))
pari:[g,chi] = znchar(Mod(214,403))
Modulus: | 403 | |
Conductor: | 403 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ403(7,⋅)
χ403(19,⋅)
χ403(41,⋅)
χ403(45,⋅)
χ403(59,⋅)
χ403(80,⋅)
χ403(102,⋅)
χ403(162,⋅)
χ403(206,⋅)
χ403(214,⋅)
χ403(258,⋅)
χ403(267,⋅)
χ403(288,⋅)
χ403(293,⋅)
χ403(297,⋅)
χ403(392,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(249,313) → (e(125),e(158))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ403(214,a) |
−1 | 1 | e(6013) | e(51) | e(3013) | e(125) | e(125) | e(6031) | e(2013) | e(52) | e(3019) | e(6011) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)