from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43200, base_ring=CyclotomicField(720))
M = H._module
chi = DirichletCharacter(H, M([0,585,320,612]))
pari: [g,chi] = znchar(Mod(21397,43200))
χ43200(13,⋅)
χ43200(277,⋅)
χ43200(517,⋅)
χ43200(733,⋅)
χ43200(997,⋅)
χ43200(1213,⋅)
χ43200(1237,⋅)
χ43200(1453,⋅)
χ43200(1717,⋅)
χ43200(1933,⋅)
χ43200(2173,⋅)
χ43200(2437,⋅)
χ43200(2653,⋅)
χ43200(2677,⋅)
χ43200(3373,⋅)
χ43200(3397,⋅)
χ43200(3613,⋅)
χ43200(3877,⋅)
χ43200(4117,⋅)
χ43200(4333,⋅)
χ43200(4597,⋅)
χ43200(4813,⋅)
χ43200(4837,⋅)
χ43200(5053,⋅)
χ43200(5317,⋅)
χ43200(5533,⋅)
χ43200(5773,⋅)
χ43200(6037,⋅)
χ43200(6253,⋅)
χ43200(6277,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(28351,29701,6401,29377) → (1,e(1613),e(94),e(2017))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ43200(21397,a) |
−1 | 1 | e(7235) | e(720317) | e(720643) | e(157) | e(24077) | e(360221) | e(72059) | e(9017) | e(240151) | e(360119) |