Properties

Label 43200.21397
Modulus 4320043200
Conductor 4320043200
Order 720720
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43200, base_ring=CyclotomicField(720))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,585,320,612]))
 
pari: [g,chi] = znchar(Mod(21397,43200))
 

Basic properties

Modulus: 4320043200
Conductor: 4320043200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 720720
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43200.qn

χ43200(13,)\chi_{43200}(13,\cdot) χ43200(277,)\chi_{43200}(277,\cdot) χ43200(517,)\chi_{43200}(517,\cdot) χ43200(733,)\chi_{43200}(733,\cdot) χ43200(997,)\chi_{43200}(997,\cdot) χ43200(1213,)\chi_{43200}(1213,\cdot) χ43200(1237,)\chi_{43200}(1237,\cdot) χ43200(1453,)\chi_{43200}(1453,\cdot) χ43200(1717,)\chi_{43200}(1717,\cdot) χ43200(1933,)\chi_{43200}(1933,\cdot) χ43200(2173,)\chi_{43200}(2173,\cdot) χ43200(2437,)\chi_{43200}(2437,\cdot) χ43200(2653,)\chi_{43200}(2653,\cdot) χ43200(2677,)\chi_{43200}(2677,\cdot) χ43200(3373,)\chi_{43200}(3373,\cdot) χ43200(3397,)\chi_{43200}(3397,\cdot) χ43200(3613,)\chi_{43200}(3613,\cdot) χ43200(3877,)\chi_{43200}(3877,\cdot) χ43200(4117,)\chi_{43200}(4117,\cdot) χ43200(4333,)\chi_{43200}(4333,\cdot) χ43200(4597,)\chi_{43200}(4597,\cdot) χ43200(4813,)\chi_{43200}(4813,\cdot) χ43200(4837,)\chi_{43200}(4837,\cdot) χ43200(5053,)\chi_{43200}(5053,\cdot) χ43200(5317,)\chi_{43200}(5317,\cdot) χ43200(5533,)\chi_{43200}(5533,\cdot) χ43200(5773,)\chi_{43200}(5773,\cdot) χ43200(6037,)\chi_{43200}(6037,\cdot) χ43200(6253,)\chi_{43200}(6253,\cdot) χ43200(6277,)\chi_{43200}(6277,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ720)\Q(\zeta_{720})
Fixed field: Number field defined by a degree 720 polynomial (not computed)

Values on generators

(28351,29701,6401,29377)(28351,29701,6401,29377)(1,e(1316),e(49),e(1720))(1,e\left(\frac{13}{16}\right),e\left(\frac{4}{9}\right),e\left(\frac{17}{20}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ43200(21397,a) \chi_{ 43200 }(21397, a) 1-111e(3572)e\left(\frac{35}{72}\right)e(317720)e\left(\frac{317}{720}\right)e(643720)e\left(\frac{643}{720}\right)e(715)e\left(\frac{7}{15}\right)e(77240)e\left(\frac{77}{240}\right)e(221360)e\left(\frac{221}{360}\right)e(59720)e\left(\frac{59}{720}\right)e(1790)e\left(\frac{17}{90}\right)e(151240)e\left(\frac{151}{240}\right)e(119360)e\left(\frac{119}{360}\right)
sage: chi.jacobi_sum(n)
 
χ43200(21397,a)   \chi_{ 43200 }(21397,a) \; at   a=\;a = e.g. 2