Properties

Label 441.110
Modulus 441441
Conductor 441441
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,11]))
 
pari: [g,chi] = znchar(Mod(110,441))
 

Basic properties

Modulus: 441441
Conductor: 441441
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 441.bd

χ441(47,)\chi_{441}(47,\cdot) χ441(59,)\chi_{441}(59,\cdot) χ441(110,)\chi_{441}(110,\cdot) χ441(122,)\chi_{441}(122,\cdot) χ441(173,)\chi_{441}(173,\cdot) χ441(185,)\chi_{441}(185,\cdot) χ441(236,)\chi_{441}(236,\cdot) χ441(248,)\chi_{441}(248,\cdot) χ441(299,)\chi_{441}(299,\cdot) χ441(311,)\chi_{441}(311,\cdot) χ441(425,)\chi_{441}(425,\cdot) χ441(437,)\chi_{441}(437,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(344,199)(344,199)(e(16),e(1142))(e\left(\frac{1}{6}\right),e\left(\frac{11}{42}\right))

First values

aa 1-11122445588101011111313161617171919
χ441(110,a) \chi_{ 441 }(110, a) 1111e(4142)e\left(\frac{41}{42}\right)e(2021)e\left(\frac{20}{21}\right)e(37)e\left(\frac{3}{7}\right)e(1314)e\left(\frac{13}{14}\right)e(1742)e\left(\frac{17}{42}\right)e(914)e\left(\frac{9}{14}\right)e(4142)e\left(\frac{41}{42}\right)e(1921)e\left(\frac{19}{21}\right)e(121)e\left(\frac{1}{21}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ441(110,a)   \chi_{ 441 }(110,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ441(110,))   \tau_{ a }( \chi_{ 441 }(110,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ441(110,),χ441(n,))   J(\chi_{ 441 }(110,·),\chi_{ 441 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ441(110,))  K(a,b,\chi_{ 441 }(110,·)) \; at   a,b=\; a,b = e.g. 1,2