Basic properties
Modulus: | \(4729\) | |
Conductor: | \(4729\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(394\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4729.j
\(\chi_{4729}(4,\cdot)\) \(\chi_{4729}(6,\cdot)\) \(\chi_{4729}(9,\cdot)\) \(\chi_{4729}(64,\cdot)\) \(\chi_{4729}(96,\cdot)\) \(\chi_{4729}(144,\cdot)\) \(\chi_{4729}(197,\cdot)\) \(\chi_{4729}(216,\cdot)\) \(\chi_{4729}(242,\cdot)\) \(\chi_{4729}(254,\cdot)\) \(\chi_{4729}(324,\cdot)\) \(\chi_{4729}(350,\cdot)\) \(\chi_{4729}(355,\cdot)\) \(\chi_{4729}(363,\cdot)\) \(\chi_{4729}(381,\cdot)\) \(\chi_{4729}(413,\cdot)\) \(\chi_{4729}(422,\cdot)\) \(\chi_{4729}(451,\cdot)\) \(\chi_{4729}(454,\cdot)\) \(\chi_{4729}(455,\cdot)\) \(\chi_{4729}(458,\cdot)\) \(\chi_{4729}(475,\cdot)\) \(\chi_{4729}(486,\cdot)\) \(\chi_{4729}(525,\cdot)\) \(\chi_{4729}(607,\cdot)\) \(\chi_{4729}(613,\cdot)\) \(\chi_{4729}(633,\cdot)\) \(\chi_{4729}(634,\cdot)\) \(\chi_{4729}(643,\cdot)\) \(\chi_{4729}(670,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{197})$ |
Fixed field: | Number field defined by a degree 394 polynomial (not computed) |
Values on generators
\(17\) → \(e\left(\frac{387}{394}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 4729 }(1079, a) \) | \(1\) | \(1\) | \(e\left(\frac{69}{197}\right)\) | \(e\left(\frac{193}{197}\right)\) | \(e\left(\frac{138}{197}\right)\) | \(e\left(\frac{74}{197}\right)\) | \(e\left(\frac{65}{197}\right)\) | \(e\left(\frac{2}{197}\right)\) | \(e\left(\frac{10}{197}\right)\) | \(e\left(\frac{189}{197}\right)\) | \(e\left(\frac{143}{197}\right)\) | \(e\left(\frac{219}{394}\right)\) |