Properties

Label 475.148
Modulus 475475
Conductor 475475
Order 180180
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([99,110]))
 
Copy content pari:[g,chi] = znchar(Mod(148,475))
 

Basic properties

Modulus: 475475
Conductor: 475475
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 180180
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 475.bi

χ475(2,)\chi_{475}(2,\cdot) χ475(3,)\chi_{475}(3,\cdot) χ475(13,)\chi_{475}(13,\cdot) χ475(22,)\chi_{475}(22,\cdot) χ475(33,)\chi_{475}(33,\cdot) χ475(48,)\chi_{475}(48,\cdot) χ475(52,)\chi_{475}(52,\cdot) χ475(53,)\chi_{475}(53,\cdot) χ475(67,)\chi_{475}(67,\cdot) χ475(72,)\chi_{475}(72,\cdot) χ475(78,)\chi_{475}(78,\cdot) χ475(97,)\chi_{475}(97,\cdot) χ475(98,)\chi_{475}(98,\cdot) χ475(108,)\chi_{475}(108,\cdot) χ475(117,)\chi_{475}(117,\cdot) χ475(127,)\chi_{475}(127,\cdot) χ475(128,)\chi_{475}(128,\cdot) χ475(147,)\chi_{475}(147,\cdot) χ475(148,)\chi_{475}(148,\cdot) χ475(162,)\chi_{475}(162,\cdot) χ475(167,)\chi_{475}(167,\cdot) χ475(173,)\chi_{475}(173,\cdot) χ475(192,)\chi_{475}(192,\cdot) χ475(203,)\chi_{475}(203,\cdot) χ475(212,)\chi_{475}(212,\cdot) χ475(222,)\chi_{475}(222,\cdot) χ475(223,)\chi_{475}(223,\cdot) χ475(238,)\chi_{475}(238,\cdot) χ475(242,)\chi_{475}(242,\cdot) χ475(262,)\chi_{475}(262,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ180)\Q(\zeta_{180})
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

(77,401)(77,401)(e(1120),e(1118))(e\left(\frac{11}{20}\right),e\left(\frac{11}{18}\right))

First values

aa 1-11122334466778899111112121313
χ475(148,a) \chi_{ 475 }(148, a) 1111e(29180)e\left(\frac{29}{180}\right)e(143180)e\left(\frac{143}{180}\right)e(2990)e\left(\frac{29}{90}\right)e(4345)e\left(\frac{43}{45}\right)e(512)e\left(\frac{5}{12}\right)e(2960)e\left(\frac{29}{60}\right)e(5390)e\left(\frac{53}{90}\right)e(215)e\left(\frac{2}{15}\right)e(760)e\left(\frac{7}{60}\right)e(91180)e\left(\frac{91}{180}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ475(148,a)   \chi_{ 475 }(148,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ475(148,))   \tau_{ a }( \chi_{ 475 }(148,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ475(148,),χ475(n,))   J(\chi_{ 475 }(148,·),\chi_{ 475 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ475(148,))  K(a,b,\chi_{ 475 }(148,·)) \; at   a,b=\; a,b = e.g. 1,2