sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([99,110]))
pari:[g,chi] = znchar(Mod(148,475))
Modulus: | 475 | |
Conductor: | 475 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 180 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ475(2,⋅)
χ475(3,⋅)
χ475(13,⋅)
χ475(22,⋅)
χ475(33,⋅)
χ475(48,⋅)
χ475(52,⋅)
χ475(53,⋅)
χ475(67,⋅)
χ475(72,⋅)
χ475(78,⋅)
χ475(97,⋅)
χ475(98,⋅)
χ475(108,⋅)
χ475(117,⋅)
χ475(127,⋅)
χ475(128,⋅)
χ475(147,⋅)
χ475(148,⋅)
χ475(162,⋅)
χ475(167,⋅)
χ475(173,⋅)
χ475(192,⋅)
χ475(203,⋅)
χ475(212,⋅)
χ475(222,⋅)
χ475(223,⋅)
χ475(238,⋅)
χ475(242,⋅)
χ475(262,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(77,401) → (e(2011),e(1811))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ475(148,a) |
1 | 1 | e(18029) | e(180143) | e(9029) | e(4543) | e(125) | e(6029) | e(9053) | e(152) | e(607) | e(18091) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)