from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4760, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,12,18,4,9]))
pari: [g,chi] = znchar(Mod(1613,4760))
Basic properties
Modulus: | \(4760\) | |
Conductor: | \(4760\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(24\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4760.iy
\(\chi_{4760}(733,\cdot)\) \(\chi_{4760}(1613,\cdot)\) \(\chi_{4760}(2117,\cdot)\) \(\chi_{4760}(2677,\cdot)\) \(\chi_{4760}(2973,\cdot)\) \(\chi_{4760}(3477,\cdot)\) \(\chi_{4760}(4037,\cdot)\) \(\chi_{4760}(4133,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{24})\) |
Fixed field: | Number field defined by a degree 24 polynomial |
Values on generators
\((1191,2381,2857,1361,3641)\) → \((1,-1,-i,e\left(\frac{1}{6}\right),e\left(\frac{3}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
\( \chi_{ 4760 }(1613, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)