Properties

Label 512.309
Modulus 512512
Conductor 512512
Order 128128
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(128))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,69]))
 
pari: [g,chi] = znchar(Mod(309,512))
 

Basic properties

Modulus: 512512
Conductor: 512512
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 128128
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 512.o

χ512(5,)\chi_{512}(5,\cdot) χ512(13,)\chi_{512}(13,\cdot) χ512(21,)\chi_{512}(21,\cdot) χ512(29,)\chi_{512}(29,\cdot) χ512(37,)\chi_{512}(37,\cdot) χ512(45,)\chi_{512}(45,\cdot) χ512(53,)\chi_{512}(53,\cdot) χ512(61,)\chi_{512}(61,\cdot) χ512(69,)\chi_{512}(69,\cdot) χ512(77,)\chi_{512}(77,\cdot) χ512(85,)\chi_{512}(85,\cdot) χ512(93,)\chi_{512}(93,\cdot) χ512(101,)\chi_{512}(101,\cdot) χ512(109,)\chi_{512}(109,\cdot) χ512(117,)\chi_{512}(117,\cdot) χ512(125,)\chi_{512}(125,\cdot) χ512(133,)\chi_{512}(133,\cdot) χ512(141,)\chi_{512}(141,\cdot) χ512(149,)\chi_{512}(149,\cdot) χ512(157,)\chi_{512}(157,\cdot) χ512(165,)\chi_{512}(165,\cdot) χ512(173,)\chi_{512}(173,\cdot) χ512(181,)\chi_{512}(181,\cdot) χ512(189,)\chi_{512}(189,\cdot) χ512(197,)\chi_{512}(197,\cdot) χ512(205,)\chi_{512}(205,\cdot) χ512(213,)\chi_{512}(213,\cdot) χ512(221,)\chi_{512}(221,\cdot) χ512(229,)\chi_{512}(229,\cdot) χ512(237,)\chi_{512}(237,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ128)\Q(\zeta_{128})
Fixed field: Number field defined by a degree 128 polynomial (not computed)

Values on generators

(511,5)(511,5)(1,e(69128))(1,e\left(\frac{69}{128}\right))

First values

aa 1-11133557799111113131515171719192121
χ512(309,a) \chi_{ 512 }(309, a) 1111e(111128)e\left(\frac{111}{128}\right)e(69128)e\left(\frac{69}{128}\right)e(5764)e\left(\frac{57}{64}\right)e(4764)e\left(\frac{47}{64}\right)e(105128)e\left(\frac{105}{128}\right)e(107128)e\left(\frac{107}{128}\right)e(1332)e\left(\frac{13}{32}\right)e(332)e\left(\frac{3}{32}\right)e(51128)e\left(\frac{51}{128}\right)e(97128)e\left(\frac{97}{128}\right)
sage: chi.jacobi_sum(n)
 
χ512(309,a)   \chi_{ 512 }(309,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ512(309,))   \tau_{ a }( \chi_{ 512 }(309,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ512(309,),χ512(n,))   J(\chi_{ 512 }(309,·),\chi_{ 512 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ512(309,))  K(a,b,\chi_{ 512 }(309,·)) \; at   a,b=\; a,b = e.g. 1,2