Basic properties
Modulus: | \(6145\) | |
Conductor: | \(6145\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1228\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 6145.t
\(\chi_{6145}(17,\cdot)\) \(\chi_{6145}(23,\cdot)\) \(\chi_{6145}(68,\cdot)\) \(\chi_{6145}(77,\cdot)\) \(\chi_{6145}(82,\cdot)\) \(\chi_{6145}(92,\cdot)\) \(\chi_{6145}(98,\cdot)\) \(\chi_{6145}(102,\cdot)\) \(\chi_{6145}(103,\cdot)\) \(\chi_{6145}(123,\cdot)\) \(\chi_{6145}(127,\cdot)\) \(\chi_{6145}(133,\cdot)\) \(\chi_{6145}(138,\cdot)\) \(\chi_{6145}(147,\cdot)\) \(\chi_{6145}(153,\cdot)\) \(\chi_{6145}(158,\cdot)\) \(\chi_{6145}(167,\cdot)\) \(\chi_{6145}(178,\cdot)\) \(\chi_{6145}(207,\cdot)\) \(\chi_{6145}(237,\cdot)\) \(\chi_{6145}(242,\cdot)\) \(\chi_{6145}(257,\cdot)\) \(\chi_{6145}(263,\cdot)\) \(\chi_{6145}(267,\cdot)\) \(\chi_{6145}(272,\cdot)\) \(\chi_{6145}(278,\cdot)\) \(\chi_{6145}(298,\cdot)\) \(\chi_{6145}(308,\cdot)\) \(\chi_{6145}(328,\cdot)\) \(\chi_{6145}(337,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{1228})$ |
Fixed field: | Number field defined by a degree 1228 polynomial (not computed) |
Values on generators
\((4917,1231)\) → \((i,e\left(\frac{1223}{1228}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 6145 }(1037, a) \) | \(1\) | \(1\) | \(e\left(\frac{151}{614}\right)\) | \(e\left(\frac{181}{614}\right)\) | \(e\left(\frac{151}{307}\right)\) | \(e\left(\frac{166}{307}\right)\) | \(e\left(\frac{905}{1228}\right)\) | \(e\left(\frac{453}{614}\right)\) | \(e\left(\frac{181}{307}\right)\) | \(e\left(\frac{91}{1228}\right)\) | \(e\left(\frac{483}{614}\right)\) | \(e\left(\frac{79}{614}\right)\) |