Properties

Label 6145.1037
Modulus $6145$
Conductor $6145$
Order $1228$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
 
M = H._module
 
chi = DirichletCharacter(H, M([307,1223]))
 
pari: [g,chi] = znchar(Mod(1037,6145))
 

Basic properties

Modulus: \(6145\)
Conductor: \(6145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.t

\(\chi_{6145}(17,\cdot)\) \(\chi_{6145}(23,\cdot)\) \(\chi_{6145}(68,\cdot)\) \(\chi_{6145}(77,\cdot)\) \(\chi_{6145}(82,\cdot)\) \(\chi_{6145}(92,\cdot)\) \(\chi_{6145}(98,\cdot)\) \(\chi_{6145}(102,\cdot)\) \(\chi_{6145}(103,\cdot)\) \(\chi_{6145}(123,\cdot)\) \(\chi_{6145}(127,\cdot)\) \(\chi_{6145}(133,\cdot)\) \(\chi_{6145}(138,\cdot)\) \(\chi_{6145}(147,\cdot)\) \(\chi_{6145}(153,\cdot)\) \(\chi_{6145}(158,\cdot)\) \(\chi_{6145}(167,\cdot)\) \(\chi_{6145}(178,\cdot)\) \(\chi_{6145}(207,\cdot)\) \(\chi_{6145}(237,\cdot)\) \(\chi_{6145}(242,\cdot)\) \(\chi_{6145}(257,\cdot)\) \(\chi_{6145}(263,\cdot)\) \(\chi_{6145}(267,\cdot)\) \(\chi_{6145}(272,\cdot)\) \(\chi_{6145}(278,\cdot)\) \(\chi_{6145}(298,\cdot)\) \(\chi_{6145}(308,\cdot)\) \(\chi_{6145}(328,\cdot)\) \(\chi_{6145}(337,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1228})$
Fixed field: Number field defined by a degree 1228 polynomial (not computed)

Values on generators

\((4917,1231)\) → \((i,e\left(\frac{1223}{1228}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 6145 }(1037, a) \) \(1\)\(1\)\(e\left(\frac{151}{614}\right)\)\(e\left(\frac{181}{614}\right)\)\(e\left(\frac{151}{307}\right)\)\(e\left(\frac{166}{307}\right)\)\(e\left(\frac{905}{1228}\right)\)\(e\left(\frac{453}{614}\right)\)\(e\left(\frac{181}{307}\right)\)\(e\left(\frac{91}{1228}\right)\)\(e\left(\frac{483}{614}\right)\)\(e\left(\frac{79}{614}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6145 }(1037,a) \;\) at \(\;a = \) e.g. 2