Properties

Label 6145.1049
Modulus $6145$
Conductor $6145$
Order $614$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(614))
 
M = H._module
 
chi = DirichletCharacter(H, M([307,388]))
 
pari: [g,chi] = znchar(Mod(1049,6145))
 

Basic properties

Modulus: \(6145\)
Conductor: \(6145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(614\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.n

\(\chi_{6145}(34,\cdot)\) \(\chi_{6145}(49,\cdot)\) \(\chi_{6145}(69,\cdot)\) \(\chi_{6145}(79,\cdot)\) \(\chi_{6145}(89,\cdot)\) \(\chi_{6145}(139,\cdot)\) \(\chi_{6145}(149,\cdot)\) \(\chi_{6145}(154,\cdot)\) \(\chi_{6145}(164,\cdot)\) \(\chi_{6145}(179,\cdot)\) \(\chi_{6145}(184,\cdot)\) \(\chi_{6145}(204,\cdot)\) \(\chi_{6145}(209,\cdot)\) \(\chi_{6145}(239,\cdot)\) \(\chi_{6145}(254,\cdot)\) \(\chi_{6145}(294,\cdot)\) \(\chi_{6145}(299,\cdot)\) \(\chi_{6145}(309,\cdot)\) \(\chi_{6145}(334,\cdot)\) \(\chi_{6145}(369,\cdot)\) \(\chi_{6145}(389,\cdot)\) \(\chi_{6145}(399,\cdot)\) \(\chi_{6145}(409,\cdot)\) \(\chi_{6145}(414,\cdot)\) \(\chi_{6145}(449,\cdot)\) \(\chi_{6145}(459,\cdot)\) \(\chi_{6145}(474,\cdot)\) \(\chi_{6145}(479,\cdot)\) \(\chi_{6145}(484,\cdot)\) \(\chi_{6145}(514,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{307})$
Fixed field: Number field defined by a degree 614 polynomial (not computed)

Values on generators

\((4917,1231)\) → \((-1,e\left(\frac{194}{307}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 6145 }(1049, a) \) \(1\)\(1\)\(e\left(\frac{81}{614}\right)\)\(e\left(\frac{337}{614}\right)\)\(e\left(\frac{81}{307}\right)\)\(e\left(\frac{209}{307}\right)\)\(e\left(\frac{75}{614}\right)\)\(e\left(\frac{243}{614}\right)\)\(e\left(\frac{30}{307}\right)\)\(e\left(\frac{276}{307}\right)\)\(e\left(\frac{499}{614}\right)\)\(e\left(\frac{449}{614}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6145 }(1049,a) \;\) at \(\;a = \) e.g. 2