Properties

Label 6145.1063
Modulus 61456145
Conductor 61456145
Order 12281228
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
 
M = H._module
 
chi = DirichletCharacter(H, M([921,1062]))
 
pari: [g,chi] = znchar(Mod(1063,6145))
 

Basic properties

Modulus: 61456145
Conductor: 61456145
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 12281228
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.r

χ6145(7,)\chi_{6145}(7,\cdot) χ6145(22,)\chi_{6145}(22,\cdot) χ6145(42,)\chi_{6145}(42,\cdot) χ6145(43,)\chi_{6145}(43,\cdot) χ6145(57,)\chi_{6145}(57,\cdot) χ6145(58,)\chi_{6145}(58,\cdot) χ6145(73,)\chi_{6145}(73,\cdot) χ6145(97,)\chi_{6145}(97,\cdot) χ6145(107,)\chi_{6145}(107,\cdot) χ6145(112,)\chi_{6145}(112,\cdot) χ6145(113,)\chi_{6145}(113,\cdot) χ6145(132,)\chi_{6145}(132,\cdot) χ6145(142,)\chi_{6145}(142,\cdot) χ6145(152,)\chi_{6145}(152,\cdot) χ6145(157,)\chi_{6145}(157,\cdot) χ6145(182,)\chi_{6145}(182,\cdot) χ6145(188,)\chi_{6145}(188,\cdot) χ6145(197,)\chi_{6145}(197,\cdot) χ6145(212,)\chi_{6145}(212,\cdot) χ6145(217,)\chi_{6145}(217,\cdot) χ6145(233,)\chi_{6145}(233,\cdot) χ6145(238,)\chi_{6145}(238,\cdot) χ6145(247,)\chi_{6145}(247,\cdot) χ6145(252,)\chi_{6145}(252,\cdot) χ6145(253,)\chi_{6145}(253,\cdot) χ6145(258,)\chi_{6145}(258,\cdot) χ6145(262,)\chi_{6145}(262,\cdot) χ6145(268,)\chi_{6145}(268,\cdot) χ6145(277,)\chi_{6145}(277,\cdot) χ6145(283,)\chi_{6145}(283,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1228)\Q(\zeta_{1228})
Fixed field: Number field defined by a degree 1228 polynomial (not computed)

Values on generators

(4917,1231)(4917,1231)(i,e(531614))(-i,e\left(\frac{531}{614}\right))

First values

aa 1-11122334466778899111112121313
χ6145(1063,a) \chi_{ 6145 }(1063, a) 1-111e(7551228)e\left(\frac{755}{1228}\right)e(9051228)e\left(\frac{905}{1228}\right)e(141614)e\left(\frac{141}{614}\right)e(108307)e\left(\frac{108}{307}\right)e(8811228)e\left(\frac{881}{1228}\right)e(10371228)e\left(\frac{1037}{1228}\right)e(291614)e\left(\frac{291}{614}\right)e(37614)e\left(\frac{37}{614}\right)e(11871228)e\left(\frac{1187}{1228}\right)e(10091228)e\left(\frac{1009}{1228}\right)
sage: chi.jacobi_sum(n)
 
χ6145(1063,a)   \chi_{ 6145 }(1063,a) \; at   a=\;a = e.g. 2