Properties

Label 6145.1063
Modulus $6145$
Conductor $6145$
Order $1228$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
 
M = H._module
 
chi = DirichletCharacter(H, M([921,1062]))
 
pari: [g,chi] = znchar(Mod(1063,6145))
 

Basic properties

Modulus: \(6145\)
Conductor: \(6145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.r

\(\chi_{6145}(7,\cdot)\) \(\chi_{6145}(22,\cdot)\) \(\chi_{6145}(42,\cdot)\) \(\chi_{6145}(43,\cdot)\) \(\chi_{6145}(57,\cdot)\) \(\chi_{6145}(58,\cdot)\) \(\chi_{6145}(73,\cdot)\) \(\chi_{6145}(97,\cdot)\) \(\chi_{6145}(107,\cdot)\) \(\chi_{6145}(112,\cdot)\) \(\chi_{6145}(113,\cdot)\) \(\chi_{6145}(132,\cdot)\) \(\chi_{6145}(142,\cdot)\) \(\chi_{6145}(152,\cdot)\) \(\chi_{6145}(157,\cdot)\) \(\chi_{6145}(182,\cdot)\) \(\chi_{6145}(188,\cdot)\) \(\chi_{6145}(197,\cdot)\) \(\chi_{6145}(212,\cdot)\) \(\chi_{6145}(217,\cdot)\) \(\chi_{6145}(233,\cdot)\) \(\chi_{6145}(238,\cdot)\) \(\chi_{6145}(247,\cdot)\) \(\chi_{6145}(252,\cdot)\) \(\chi_{6145}(253,\cdot)\) \(\chi_{6145}(258,\cdot)\) \(\chi_{6145}(262,\cdot)\) \(\chi_{6145}(268,\cdot)\) \(\chi_{6145}(277,\cdot)\) \(\chi_{6145}(283,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1228})$
Fixed field: Number field defined by a degree 1228 polynomial (not computed)

Values on generators

\((4917,1231)\) → \((-i,e\left(\frac{531}{614}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 6145 }(1063, a) \) \(-1\)\(1\)\(e\left(\frac{755}{1228}\right)\)\(e\left(\frac{905}{1228}\right)\)\(e\left(\frac{141}{614}\right)\)\(e\left(\frac{108}{307}\right)\)\(e\left(\frac{881}{1228}\right)\)\(e\left(\frac{1037}{1228}\right)\)\(e\left(\frac{291}{614}\right)\)\(e\left(\frac{37}{614}\right)\)\(e\left(\frac{1187}{1228}\right)\)\(e\left(\frac{1009}{1228}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6145 }(1063,a) \;\) at \(\;a = \) e.g. 2