from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
M = H._module
chi = DirichletCharacter(H, M([921,1062]))
pari: [g,chi] = znchar(Mod(1063,6145))
χ6145(7,⋅)
χ6145(22,⋅)
χ6145(42,⋅)
χ6145(43,⋅)
χ6145(57,⋅)
χ6145(58,⋅)
χ6145(73,⋅)
χ6145(97,⋅)
χ6145(107,⋅)
χ6145(112,⋅)
χ6145(113,⋅)
χ6145(132,⋅)
χ6145(142,⋅)
χ6145(152,⋅)
χ6145(157,⋅)
χ6145(182,⋅)
χ6145(188,⋅)
χ6145(197,⋅)
χ6145(212,⋅)
χ6145(217,⋅)
χ6145(233,⋅)
χ6145(238,⋅)
χ6145(247,⋅)
χ6145(252,⋅)
χ6145(253,⋅)
χ6145(258,⋅)
χ6145(262,⋅)
χ6145(268,⋅)
χ6145(277,⋅)
χ6145(283,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4917,1231) → (−i,e(614531))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ6145(1063,a) |
−1 | 1 | e(1228755) | e(1228905) | e(614141) | e(307108) | e(1228881) | e(12281037) | e(614291) | e(61437) | e(12281187) | e(12281009) |