Properties

Label 6145.1072
Modulus $6145$
Conductor $6145$
Order $1228$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
 
M = H._module
 
chi = DirichletCharacter(H, M([307,1192]))
 
pari: [g,chi] = znchar(Mod(1072,6145))
 

Basic properties

Modulus: \(6145\)
Conductor: \(6145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.q

\(\chi_{6145}(28,\cdot)\) \(\chi_{6145}(33,\cdot)\) \(\chi_{6145}(38,\cdot)\) \(\chi_{6145}(47,\cdot)\) \(\chi_{6145}(53,\cdot)\) \(\chi_{6145}(63,\cdot)\) \(\chi_{6145}(67,\cdot)\) \(\chi_{6145}(87,\cdot)\) \(\chi_{6145}(88,\cdot)\) \(\chi_{6145}(137,\cdot)\) \(\chi_{6145}(143,\cdot)\) \(\chi_{6145}(163,\cdot)\) \(\chi_{6145}(168,\cdot)\) \(\chi_{6145}(172,\cdot)\) \(\chi_{6145}(187,\cdot)\) \(\chi_{6145}(198,\cdot)\) \(\chi_{6145}(213,\cdot)\) \(\chi_{6145}(218,\cdot)\) \(\chi_{6145}(228,\cdot)\) \(\chi_{6145}(232,\cdot)\) \(\chi_{6145}(273,\cdot)\) \(\chi_{6145}(282,\cdot)\) \(\chi_{6145}(287,\cdot)\) \(\chi_{6145}(292,\cdot)\) \(\chi_{6145}(307,\cdot)\) \(\chi_{6145}(317,\cdot)\) \(\chi_{6145}(318,\cdot)\) \(\chi_{6145}(322,\cdot)\) \(\chi_{6145}(357,\cdot)\) \(\chi_{6145}(377,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1228})$
Fixed field: Number field defined by a degree 1228 polynomial (not computed)

Values on generators

\((4917,1231)\) → \((i,e\left(\frac{298}{307}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 6145 }(1072, a) \) \(-1\)\(1\)\(e\left(\frac{271}{1228}\right)\)\(e\left(\frac{89}{1228}\right)\)\(e\left(\frac{271}{614}\right)\)\(e\left(\frac{90}{307}\right)\)\(e\left(\frac{683}{1228}\right)\)\(e\left(\frac{813}{1228}\right)\)\(e\left(\frac{89}{614}\right)\)\(e\left(\frac{41}{307}\right)\)\(e\left(\frac{631}{1228}\right)\)\(e\left(\frac{585}{1228}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6145 }(1072,a) \;\) at \(\;a = \) e.g. 2