Properties

Label 6145.1134
Modulus $6145$
Conductor $6145$
Order $1228$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6145, base_ring=CyclotomicField(1228))
 
M = H._module
 
chi = DirichletCharacter(H, M([614,83]))
 
pari: [g,chi] = znchar(Mod(1134,6145))
 

Basic properties

Modulus: \(6145\)
Conductor: \(6145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1228\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6145.p

\(\chi_{6145}(14,\cdot)\) \(\chi_{6145}(19,\cdot)\) \(\chi_{6145}(29,\cdot)\) \(\chi_{6145}(44,\cdot)\) \(\chi_{6145}(84,\cdot)\) \(\chi_{6145}(94,\cdot)\) \(\chi_{6145}(99,\cdot)\) \(\chi_{6145}(109,\cdot)\) \(\chi_{6145}(114,\cdot)\) \(\chi_{6145}(119,\cdot)\) \(\chi_{6145}(129,\cdot)\) \(\chi_{6145}(134,\cdot)\) \(\chi_{6145}(159,\cdot)\) \(\chi_{6145}(174,\cdot)\) \(\chi_{6145}(189,\cdot)\) \(\chi_{6145}(194,\cdot)\) \(\chi_{6145}(214,\cdot)\) \(\chi_{6145}(219,\cdot)\) \(\chi_{6145}(224,\cdot)\) \(\chi_{6145}(229,\cdot)\) \(\chi_{6145}(259,\cdot)\) \(\chi_{6145}(264,\cdot)\) \(\chi_{6145}(269,\cdot)\) \(\chi_{6145}(274,\cdot)\) \(\chi_{6145}(284,\cdot)\) \(\chi_{6145}(304,\cdot)\) \(\chi_{6145}(314,\cdot)\) \(\chi_{6145}(339,\cdot)\) \(\chi_{6145}(344,\cdot)\) \(\chi_{6145}(349,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1228})$
Fixed field: Number field defined by a degree 1228 polynomial (not computed)

Values on generators

\((4917,1231)\) → \((-1,e\left(\frac{83}{1228}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 6145 }(1134, a) \) \(-1\)\(1\)\(e\left(\frac{697}{1228}\right)\)\(e\left(\frac{315}{1228}\right)\)\(e\left(\frac{83}{614}\right)\)\(e\left(\frac{253}{307}\right)\)\(e\left(\frac{5}{307}\right)\)\(e\left(\frac{863}{1228}\right)\)\(e\left(\frac{315}{614}\right)\)\(e\left(\frac{1191}{1228}\right)\)\(e\left(\frac{481}{1228}\right)\)\(e\left(\frac{263}{1228}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6145 }(1134,a) \;\) at \(\;a = \) e.g. 2