Properties

Label 637.418
Modulus 637637
Conductor 637637
Order 8484
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([34,7]))
 
pari: [g,chi] = znchar(Mod(418,637))
 

Basic properties

Modulus: 637637
Conductor: 637637
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 637.cd

χ637(45,)\chi_{637}(45,\cdot) χ637(54,)\chi_{637}(54,\cdot) χ637(59,)\chi_{637}(59,\cdot) χ637(89,)\chi_{637}(89,\cdot) χ637(136,)\chi_{637}(136,\cdot) χ637(145,)\chi_{637}(145,\cdot) χ637(150,)\chi_{637}(150,\cdot) χ637(180,)\chi_{637}(180,\cdot) χ637(236,)\chi_{637}(236,\cdot) χ637(241,)\chi_{637}(241,\cdot) χ637(271,)\chi_{637}(271,\cdot) χ637(318,)\chi_{637}(318,\cdot) χ637(327,)\chi_{637}(327,\cdot) χ637(332,)\chi_{637}(332,\cdot) χ637(409,)\chi_{637}(409,\cdot) χ637(418,)\chi_{637}(418,\cdot) χ637(453,)\chi_{637}(453,\cdot) χ637(500,)\chi_{637}(500,\cdot) χ637(514,)\chi_{637}(514,\cdot) χ637(544,)\chi_{637}(544,\cdot) χ637(591,)\chi_{637}(591,\cdot) χ637(600,)\chi_{637}(600,\cdot) χ637(605,)\chi_{637}(605,\cdot) χ637(635,)\chi_{637}(635,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

(248,197)(248,197)(e(1742),e(112))(e\left(\frac{17}{42}\right),e\left(\frac{1}{12}\right))

First values

aa 1-11122334455668899101011111212
χ637(418,a) \chi_{ 637 }(418, a) 1111e(1728)e\left(\frac{17}{28}\right)e(3142)e\left(\frac{31}{42}\right)e(314)e\left(\frac{3}{14}\right)e(4184)e\left(\frac{41}{84}\right)e(2984)e\left(\frac{29}{84}\right)e(2328)e\left(\frac{23}{28}\right)e(1021)e\left(\frac{10}{21}\right)e(221)e\left(\frac{2}{21}\right)e(6584)e\left(\frac{65}{84}\right)e(2021)e\left(\frac{20}{21}\right)
sage: chi.jacobi_sum(n)
 
χ637(418,a)   \chi_{ 637 }(418,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ637(418,))   \tau_{ a }( \chi_{ 637 }(418,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ637(418,),χ637(n,))   J(\chi_{ 637 }(418,·),\chi_{ 637 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ637(418,))  K(a,b,\chi_{ 637 }(418,·)) \; at   a,b=\; a,b = e.g. 1,2