Properties

Label 6384.1469
Modulus 63846384
Conductor 63846384
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,18,18,28]))
 
pari: [g,chi] = znchar(Mod(1469,6384))
 

Basic properties

Modulus: 63846384
Conductor: 63846384
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.ok

χ6384(461,)\chi_{6384}(461,\cdot) χ6384(1301,)\chi_{6384}(1301,\cdot) χ6384(1469,)\chi_{6384}(1469,\cdot) χ6384(1973,)\chi_{6384}(1973,\cdot) χ6384(2645,)\chi_{6384}(2645,\cdot) χ6384(2981,)\chi_{6384}(2981,\cdot) χ6384(3653,)\chi_{6384}(3653,\cdot) χ6384(4493,)\chi_{6384}(4493,\cdot) χ6384(4661,)\chi_{6384}(4661,\cdot) χ6384(5165,)\chi_{6384}(5165,\cdot) χ6384(5837,)\chi_{6384}(5837,\cdot) χ6384(6173,)\chi_{6384}(6173,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

(799,4789,2129,913,1009)(799,4789,2129,913,1009)(1,i,1,1,e(79))(1,-i,-1,-1,e\left(\frac{7}{9}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ6384(1469,a) \chi_{ 6384 }(1469, a) 1111e(736)e\left(\frac{7}{36}\right)e(712)e\left(\frac{7}{12}\right)e(2336)e\left(\frac{23}{36}\right)e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)e(718)e\left(\frac{7}{18}\right)e(3536)e\left(\frac{35}{36}\right)e(16)e\left(\frac{1}{6}\right)i-ie(1118)e\left(\frac{11}{18}\right)
sage: chi.jacobi_sum(n)
 
χ6384(1469,a)   \chi_{ 6384 }(1469,a) \; at   a=\;a = e.g. 2