Properties

Label 664.643
Modulus 664664
Conductor 664664
Order 8282
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(664, base_ring=CyclotomicField(82))
 
M = H._module
 
chi = DirichletCharacter(H, M([41,41,39]))
 
pari: [g,chi] = znchar(Mod(643,664))
 

Basic properties

Modulus: 664664
Conductor: 664664
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8282
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 664.j

χ664(19,)\chi_{664}(19,\cdot) χ664(35,)\chi_{664}(35,\cdot) χ664(43,)\chi_{664}(43,\cdot) χ664(67,)\chi_{664}(67,\cdot) χ664(91,)\chi_{664}(91,\cdot) χ664(107,)\chi_{664}(107,\cdot) χ664(115,)\chi_{664}(115,\cdot) χ664(139,)\chi_{664}(139,\cdot) χ664(155,)\chi_{664}(155,\cdot) χ664(163,)\chi_{664}(163,\cdot) χ664(171,)\chi_{664}(171,\cdot) χ664(179,)\chi_{664}(179,\cdot) χ664(211,)\chi_{664}(211,\cdot) χ664(219,)\chi_{664}(219,\cdot) χ664(251,)\chi_{664}(251,\cdot) χ664(267,)\chi_{664}(267,\cdot) χ664(283,)\chi_{664}(283,\cdot) χ664(291,)\chi_{664}(291,\cdot) χ664(299,)\chi_{664}(299,\cdot) χ664(307,)\chi_{664}(307,\cdot) χ664(315,)\chi_{664}(315,\cdot) χ664(323,)\chi_{664}(323,\cdot) χ664(347,)\chi_{664}(347,\cdot) χ664(371,)\chi_{664}(371,\cdot) χ664(379,)\chi_{664}(379,\cdot) χ664(387,)\chi_{664}(387,\cdot) χ664(403,)\chi_{664}(403,\cdot) χ664(411,)\chi_{664}(411,\cdot) χ664(435,)\chi_{664}(435,\cdot) χ664(467,)\chi_{664}(467,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ41)\Q(\zeta_{41})
Fixed field: Number field defined by a degree 82 polynomial

Values on generators

(167,333,417)(167,333,417)(1,1,e(3982))(-1,-1,e\left(\frac{39}{82}\right))

First values

aa 1-11133557799111113131515171719192121
χ664(643,a) \chi_{ 664 }(643, a) 1111e(1041)e\left(\frac{10}{41}\right)e(1441)e\left(\frac{14}{41}\right)e(2582)e\left(\frac{25}{82}\right)e(2041)e\left(\frac{20}{41}\right)e(1741)e\left(\frac{17}{41}\right)e(541)e\left(\frac{5}{41}\right)e(2441)e\left(\frac{24}{41}\right)e(2641)e\left(\frac{26}{41}\right)e(2982)e\left(\frac{29}{82}\right)e(4582)e\left(\frac{45}{82}\right)
sage: chi.jacobi_sum(n)
 
χ664(643,a)   \chi_{ 664 }(643,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ664(643,))   \tau_{ a }( \chi_{ 664 }(643,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ664(643,),χ664(n,))   J(\chi_{ 664 }(643,·),\chi_{ 664 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ664(643,))  K(a,b,\chi_{ 664 }(643,·)) \; at   a,b=\; a,b = e.g. 1,2