from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(664, base_ring=CyclotomicField(82))
M = H._module
chi = DirichletCharacter(H, M([41,41,39]))
pari: [g,chi] = znchar(Mod(643,664))
χ664(19,⋅)
χ664(35,⋅)
χ664(43,⋅)
χ664(67,⋅)
χ664(91,⋅)
χ664(107,⋅)
χ664(115,⋅)
χ664(139,⋅)
χ664(155,⋅)
χ664(163,⋅)
χ664(171,⋅)
χ664(179,⋅)
χ664(211,⋅)
χ664(219,⋅)
χ664(251,⋅)
χ664(267,⋅)
χ664(283,⋅)
χ664(291,⋅)
χ664(299,⋅)
χ664(307,⋅)
χ664(315,⋅)
χ664(323,⋅)
χ664(347,⋅)
χ664(371,⋅)
χ664(379,⋅)
χ664(387,⋅)
χ664(403,⋅)
χ664(411,⋅)
χ664(435,⋅)
χ664(467,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(167,333,417) → (−1,−1,e(8239))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ664(643,a) |
1 | 1 | e(4110) | e(4114) | e(8225) | e(4120) | e(4117) | e(415) | e(4124) | e(4126) | e(8229) | e(8245) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)