Properties

Label 680.317
Modulus 680680
Conductor 680680
Order 1616
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,8,4,7]))
 
Copy content pari:[g,chi] = znchar(Mod(317,680))
 

Basic properties

Modulus: 680680
Conductor: 680680
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1616
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 680.ct

χ680(133,)\chi_{680}(133,\cdot) χ680(173,)\chi_{680}(173,\cdot) χ680(197,)\chi_{680}(197,\cdot) χ680(317,)\chi_{680}(317,\cdot) χ680(397,)\chi_{680}(397,\cdot) χ680(413,)\chi_{680}(413,\cdot) χ680(517,)\chi_{680}(517,\cdot) χ680(573,)\chi_{680}(573,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.11724484818984205488128000000000000.2

Values on generators

(511,341,137,241)(511,341,137,241)(1,1,i,e(716))(1,-1,i,e\left(\frac{7}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ680(317,a) \chi_{ 680 }(317, a) 1111e(1116)e\left(\frac{11}{16}\right)e(116)e\left(\frac{1}{16}\right)e(38)e\left(\frac{3}{8}\right)e(916)e\left(\frac{9}{16}\right)11e(18)e\left(\frac{1}{8}\right)i-ie(516)e\left(\frac{5}{16}\right)e(116)e\left(\frac{1}{16}\right)e(1116)e\left(\frac{11}{16}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ680(317,a)   \chi_{ 680 }(317,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ680(317,))   \tau_{ a }( \chi_{ 680 }(317,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ680(317,),χ680(n,))   J(\chi_{ 680 }(317,·),\chi_{ 680 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ680(317,))  K(a,b,\chi_{ 680 }(317,·)) \; at   a,b=\; a,b = e.g. 1,2