sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(680, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,8,4,7]))
pari:[g,chi] = znchar(Mod(317,680))
Modulus: | 680 | |
Conductor: | 680 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 16 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ680(133,⋅)
χ680(173,⋅)
χ680(197,⋅)
χ680(317,⋅)
χ680(397,⋅)
χ680(413,⋅)
χ680(517,⋅)
χ680(573,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(511,341,137,241) → (1,−1,i,e(167))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ680(317,a) |
1 | 1 | e(1611) | e(161) | e(83) | e(169) | 1 | e(81) | −i | e(165) | e(161) | e(1611) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)