Properties

Label 6900.5081
Modulus $6900$
Conductor $1725$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,44,65]))
 
pari: [g,chi] = znchar(Mod(5081,6900))
 

Basic properties

Modulus: \(6900\)
Conductor: \(1725\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1725}(1631,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6900.dj

\(\chi_{6900}(221,\cdot)\) \(\chi_{6900}(281,\cdot)\) \(\chi_{6900}(341,\cdot)\) \(\chi_{6900}(521,\cdot)\) \(\chi_{6900}(641,\cdot)\) \(\chi_{6900}(881,\cdot)\) \(\chi_{6900}(941,\cdot)\) \(\chi_{6900}(1121,\cdot)\) \(\chi_{6900}(1661,\cdot)\) \(\chi_{6900}(1721,\cdot)\) \(\chi_{6900}(1781,\cdot)\) \(\chi_{6900}(2021,\cdot)\) \(\chi_{6900}(2081,\cdot)\) \(\chi_{6900}(2261,\cdot)\) \(\chi_{6900}(2321,\cdot)\) \(\chi_{6900}(2981,\cdot)\) \(\chi_{6900}(3041,\cdot)\) \(\chi_{6900}(3161,\cdot)\) \(\chi_{6900}(3281,\cdot)\) \(\chi_{6900}(3461,\cdot)\) \(\chi_{6900}(3641,\cdot)\) \(\chi_{6900}(3881,\cdot)\) \(\chi_{6900}(4361,\cdot)\) \(\chi_{6900}(4421,\cdot)\) \(\chi_{6900}(4481,\cdot)\) \(\chi_{6900}(4541,\cdot)\) \(\chi_{6900}(4661,\cdot)\) \(\chi_{6900}(4781,\cdot)\) \(\chi_{6900}(4841,\cdot)\) \(\chi_{6900}(5021,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3451,4601,277,1201)\) → \((1,-1,e\left(\frac{2}{5}\right),e\left(\frac{13}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 6900 }(5081, a) \) \(1\)\(1\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{48}{55}\right)\)\(e\left(\frac{46}{55}\right)\)\(e\left(\frac{7}{110}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{41}{55}\right)\)\(e\left(\frac{1}{110}\right)\)\(e\left(\frac{21}{110}\right)\)\(e\left(\frac{21}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6900 }(5081,a) \;\) at \(\;a = \) e.g. 2