Properties

Modulus $736$
Structure \(C_{2}\times C_{2}\times C_{88}\)
Order $352$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(736)
 
pari: g = idealstar(,736,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 352
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{88}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{736}(415,\cdot)$, $\chi_{736}(645,\cdot)$, $\chi_{736}(97,\cdot)$

First 32 of 352 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{736}(1,\cdot)\) 736.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{736}(3,\cdot)\) 736.bd 88 yes \(-1\) \(1\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{29}{88}\right)\)
\(\chi_{736}(5,\cdot)\) 736.bc 88 yes \(-1\) \(1\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{19}{88}\right)\)
\(\chi_{736}(7,\cdot)\) 736.bb 44 no \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{736}(9,\cdot)\) 736.ba 44 no \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{736}(11,\cdot)\) 736.be 88 yes \(1\) \(1\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{39}{88}\right)\)
\(\chi_{736}(13,\cdot)\) 736.bf 88 yes \(1\) \(1\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{57}{88}\right)\)
\(\chi_{736}(15,\cdot)\) 736.r 22 no \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{736}(17,\cdot)\) 736.u 22 no \(-1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{736}(19,\cdot)\) 736.be 88 yes \(1\) \(1\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{21}{88}\right)\)
\(\chi_{736}(21,\cdot)\) 736.bc 88 yes \(-1\) \(1\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{71}{88}\right)\)
\(\chi_{736}(25,\cdot)\) 736.ba 44 no \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{736}(27,\cdot)\) 736.bd 88 yes \(-1\) \(1\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{37}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{87}{88}\right)\)
\(\chi_{736}(29,\cdot)\) 736.bf 88 yes \(1\) \(1\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{79}{88}\right)\) \(e\left(\frac{45}{88}\right)\)
\(\chi_{736}(31,\cdot)\) 736.v 22 no \(-1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{736}(33,\cdot)\) 736.t 22 no \(-1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{736}(35,\cdot)\) 736.bd 88 yes \(-1\) \(1\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{61}{88}\right)\)
\(\chi_{736}(37,\cdot)\) 736.bc 88 yes \(-1\) \(1\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{3}{88}\right)\)
\(\chi_{736}(39,\cdot)\) 736.y 44 no \(-1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{736}(41,\cdot)\) 736.ba 44 no \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{736}(43,\cdot)\) 736.be 88 yes \(1\) \(1\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{7}{88}\right)\)
\(\chi_{736}(45,\cdot)\) 736.p 8 yes \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{736}(47,\cdot)\) 736.g 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
\(\chi_{736}(49,\cdot)\) 736.x 22 no \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{736}(51,\cdot)\) 736.be 88 yes \(1\) \(1\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{85}{88}\right)\)
\(\chi_{736}(53,\cdot)\) 736.bc 88 yes \(-1\) \(1\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{43}{88}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{79}{88}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{31}{88}\right)\)
\(\chi_{736}(55,\cdot)\) 736.y 44 no \(-1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{736}(57,\cdot)\) 736.z 44 no \(-1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{736}(59,\cdot)\) 736.bd 88 yes \(-1\) \(1\) \(e\left(\frac{5}{88}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{79}{88}\right)\)
\(\chi_{736}(61,\cdot)\) 736.bc 88 yes \(-1\) \(1\) \(e\left(\frac{43}{88}\right)\) \(e\left(\frac{13}{88}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{81}{88}\right)\)
\(\chi_{736}(63,\cdot)\) 736.w 22 no \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{22}\right)\)
\(\chi_{736}(65,\cdot)\) 736.t 22 no \(-1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{19}{22}\right)\)
Click here to search among the remaining 320 characters.