sage: H = DirichletGroup(759)
pari: g = idealstar(,759,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 440 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{110}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{759}(254,\cdot)$, $\chi_{759}(277,\cdot)$, $\chi_{759}(166,\cdot)$ |
First 32 of 440 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{759}(1,\cdot)\) | 759.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{759}(2,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) |
\(\chi_{759}(4,\cdot)\) | 759.y | 55 | no | \(1\) | \(1\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) |
\(\chi_{759}(5,\cdot)\) | 759.bc | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) |
\(\chi_{759}(7,\cdot)\) | 759.z | 110 | no | \(1\) | \(1\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) |
\(\chi_{759}(8,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) |
\(\chi_{759}(10,\cdot)\) | 759.x | 22 | no | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{759}(13,\cdot)\) | 759.bb | 110 | no | \(-1\) | \(1\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{39}{110}\right)\) |
\(\chi_{759}(14,\cdot)\) | 759.bc | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) |
\(\chi_{759}(16,\cdot)\) | 759.y | 55 | no | \(1\) | \(1\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) |
\(\chi_{759}(17,\cdot)\) | 759.bf | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{39}{110}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{91}{110}\right)\) |
\(\chi_{759}(19,\cdot)\) | 759.z | 110 | no | \(1\) | \(1\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{97}{110}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{79}{110}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) |
\(\chi_{759}(20,\cdot)\) | 759.bc | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{61}{110}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) |
\(\chi_{759}(25,\cdot)\) | 759.y | 55 | no | \(1\) | \(1\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) |
\(\chi_{759}(26,\cdot)\) | 759.ba | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{51}{110}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{43}{110}\right)\) |
\(\chi_{759}(28,\cdot)\) | 759.z | 110 | no | \(1\) | \(1\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) |
\(\chi_{759}(29,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) |
\(\chi_{759}(31,\cdot)\) | 759.y | 55 | no | \(1\) | \(1\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) |
\(\chi_{759}(32,\cdot)\) | 759.t | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{759}(34,\cdot)\) | 759.s | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{759}(35,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{43}{110}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{42}{55}\right)\) |
\(\chi_{759}(37,\cdot)\) | 759.be | 110 | no | \(-1\) | \(1\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{53}{110}\right)\) |
\(\chi_{759}(38,\cdot)\) | 759.bc | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{53}{110}\right)\) | \(e\left(\frac{37}{110}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) |
\(\chi_{759}(40,\cdot)\) | 759.z | 110 | no | \(1\) | \(1\) | \(e\left(\frac{37}{110}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) |
\(\chi_{759}(41,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{27}{110}\right)\) | \(e\left(\frac{51}{110}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{39}{110}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) |
\(\chi_{759}(43,\cdot)\) | 759.x | 22 | no | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{759}(47,\cdot)\) | 759.o | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{759}(49,\cdot)\) | 759.y | 55 | no | \(1\) | \(1\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) |
\(\chi_{759}(50,\cdot)\) | 759.bd | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) |
\(\chi_{759}(52,\cdot)\) | 759.bb | 110 | no | \(-1\) | \(1\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{47}{110}\right)\) |
\(\chi_{759}(53,\cdot)\) | 759.bc | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{53}{110}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) |
\(\chi_{759}(56,\cdot)\) | 759.u | 22 | no | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) |