Properties

Label 759.631
Modulus $759$
Conductor $253$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(759, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,22,15]))
 
pari: [g,chi] = znchar(Mod(631,759))
 

Basic properties

Modulus: \(759\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{253}(125,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 759.be

\(\chi_{759}(37,\cdot)\) \(\chi_{759}(97,\cdot)\) \(\chi_{759}(103,\cdot)\) \(\chi_{759}(130,\cdot)\) \(\chi_{759}(136,\cdot)\) \(\chi_{759}(148,\cdot)\) \(\chi_{759}(157,\cdot)\) \(\chi_{759}(181,\cdot)\) \(\chi_{759}(214,\cdot)\) \(\chi_{759}(235,\cdot)\) \(\chi_{759}(247,\cdot)\) \(\chi_{759}(268,\cdot)\) \(\chi_{759}(295,\cdot)\) \(\chi_{759}(313,\cdot)\) \(\chi_{759}(355,\cdot)\) \(\chi_{759}(379,\cdot)\) \(\chi_{759}(388,\cdot)\) \(\chi_{759}(412,\cdot)\) \(\chi_{759}(421,\cdot)\) \(\chi_{759}(433,\cdot)\) \(\chi_{759}(454,\cdot)\) \(\chi_{759}(493,\cdot)\) \(\chi_{759}(511,\cdot)\) \(\chi_{759}(520,\cdot)\) \(\chi_{759}(526,\cdot)\) \(\chi_{759}(544,\cdot)\) \(\chi_{759}(559,\cdot)\) \(\chi_{759}(586,\cdot)\) \(\chi_{759}(592,\cdot)\) \(\chi_{759}(619,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((254,277,166)\) → \((1,e\left(\frac{1}{5}\right),e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 759 }(631, a) \) \(-1\)\(1\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{109}{110}\right)\)\(e\left(\frac{23}{55}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{6}{55}\right)\)\(e\left(\frac{51}{110}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{83}{110}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 759 }(631,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 759 }(631,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 759 }(631,·),\chi_{ 759 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 759 }(631,·)) \;\) at \(\; a,b = \) e.g. 1,2