Properties

Label 760.643
Modulus $760$
Conductor $760$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(760, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,18,27,8]))
 
pari: [g,chi] = znchar(Mod(643,760))
 

Basic properties

Modulus: \(760\)
Conductor: \(760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 760.cp

\(\chi_{760}(43,\cdot)\) \(\chi_{760}(123,\cdot)\) \(\chi_{760}(187,\cdot)\) \(\chi_{760}(283,\cdot)\) \(\chi_{760}(347,\cdot)\) \(\chi_{760}(403,\cdot)\) \(\chi_{760}(427,\cdot)\) \(\chi_{760}(443,\cdot)\) \(\chi_{760}(587,\cdot)\) \(\chi_{760}(643,\cdot)\) \(\chi_{760}(707,\cdot)\) \(\chi_{760}(747,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((191,381,457,401)\) → \((-1,-1,-i,e\left(\frac{2}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 760 }(643, a) \) \(1\)\(1\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 760 }(643,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 760 }(643,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 760 }(643,·),\chi_{ 760 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 760 }(643,·)) \;\) at \(\; a,b = \) e.g. 1,2