Properties

Label 776.379
Modulus $776$
Conductor $776$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(776, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,12,23]))
 
pari: [g,chi] = znchar(Mod(379,776))
 

Basic properties

Modulus: \(776\)
Conductor: \(776\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 776.bh

\(\chi_{776}(43,\cdot)\) \(\chi_{776}(203,\cdot)\) \(\chi_{776}(267,\cdot)\) \(\chi_{776}(315,\cdot)\) \(\chi_{776}(379,\cdot)\) \(\chi_{776}(539,\cdot)\) \(\chi_{776}(675,\cdot)\) \(\chi_{776}(683,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.341059170943014912397935265996202714623497203224598806528.1

Values on generators

\((583,389,393)\) → \((-1,-1,e\left(\frac{23}{24}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 776 }(379, a) \) \(-1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 776 }(379,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 776 }(379,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 776 }(379,·),\chi_{ 776 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 776 }(379,·)) \;\) at \(\; a,b = \) e.g. 1,2