sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(800, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([0,5,4]))
pari:[g,chi] = znchar(Mod(229,800))
Modulus: | 800 | |
Conductor: | 800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ800(29,⋅)
χ800(69,⋅)
χ800(109,⋅)
χ800(189,⋅)
χ800(229,⋅)
χ800(269,⋅)
χ800(309,⋅)
χ800(389,⋅)
χ800(429,⋅)
χ800(469,⋅)
χ800(509,⋅)
χ800(589,⋅)
χ800(629,⋅)
χ800(669,⋅)
χ800(709,⋅)
χ800(789,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(351,101,577) → (1,e(81),e(101))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ800(229,a) |
1 | 1 | e(403) | −i | e(203) | e(409) | e(4031) | e(54) | e(4027) | e(4033) | e(2017) | e(409) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)