Properties

Label 81120.75779
Modulus $81120$
Conductor $81120$
Order $312$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81120, base_ring=CyclotomicField(312))
 
M = H._module
 
chi = DirichletCharacter(H, M([156,117,156,156,74]))
 
pari: [g,chi] = znchar(Mod(75779,81120))
 

Basic properties

Modulus: \(81120\)
Conductor: \(81120\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(312\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 81120.bfw

\(\chi_{81120}(59,\cdot)\) \(\chi_{81120}(899,\cdot)\) \(\chi_{81120}(1259,\cdot)\) \(\chi_{81120}(2099,\cdot)\) \(\chi_{81120}(3179,\cdot)\) \(\chi_{81120}(4019,\cdot)\) \(\chi_{81120}(4379,\cdot)\) \(\chi_{81120}(5219,\cdot)\) \(\chi_{81120}(6299,\cdot)\) \(\chi_{81120}(7139,\cdot)\) \(\chi_{81120}(7499,\cdot)\) \(\chi_{81120}(8339,\cdot)\) \(\chi_{81120}(9419,\cdot)\) \(\chi_{81120}(10259,\cdot)\) \(\chi_{81120}(10619,\cdot)\) \(\chi_{81120}(11459,\cdot)\) \(\chi_{81120}(12539,\cdot)\) \(\chi_{81120}(13379,\cdot)\) \(\chi_{81120}(13739,\cdot)\) \(\chi_{81120}(14579,\cdot)\) \(\chi_{81120}(15659,\cdot)\) \(\chi_{81120}(16499,\cdot)\) \(\chi_{81120}(16859,\cdot)\) \(\chi_{81120}(17699,\cdot)\) \(\chi_{81120}(18779,\cdot)\) \(\chi_{81120}(19619,\cdot)\) \(\chi_{81120}(19979,\cdot)\) \(\chi_{81120}(20819,\cdot)\) \(\chi_{81120}(21899,\cdot)\) \(\chi_{81120}(22739,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{312})$
Fixed field: Number field defined by a degree 312 polynomial (not computed)

Values on generators

\((45631,70981,27041,64897,12001)\) → \((-1,e\left(\frac{3}{8}\right),-1,-1,e\left(\frac{37}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 81120 }(75779, a) \) \(-1\)\(1\)\(e\left(\frac{5}{39}\right)\)\(e\left(\frac{95}{312}\right)\)\(e\left(\frac{5}{39}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{35}{312}\right)\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{215}{312}\right)\)\(e\left(\frac{71}{78}\right)\)\(e\left(\frac{253}{312}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 81120 }(75779,a) \;\) at \(\;a = \) e.g. 2