sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(862, base_ring=CyclotomicField(430))
M = H._module
chi = DirichletCharacter(H, M([132]))
pari:[g,chi] = znchar(Mod(441,862))
χ862(5,⋅)
χ862(11,⋅)
χ862(15,⋅)
χ862(19,⋅)
χ862(23,⋅)
χ862(25,⋅)
χ862(29,⋅)
χ862(33,⋅)
χ862(41,⋅)
χ862(45,⋅)
χ862(49,⋅)
χ862(53,⋅)
χ862(57,⋅)
χ862(59,⋅)
χ862(61,⋅)
χ862(69,⋅)
χ862(75,⋅)
χ862(87,⋅)
χ862(91,⋅)
χ862(97,⋅)
χ862(99,⋅)
χ862(109,⋅)
χ862(115,⋅)
χ862(119,⋅)
χ862(121,⋅)
χ862(123,⋅)
χ862(125,⋅)
χ862(135,⋅)
χ862(139,⋅)
χ862(147,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
7 → e(21566)
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ862(441,a) |
1 | 1 | e(4341) | e(215212) | e(21566) | e(4339) | e(21568) | e(21557) | e(215202) | e(215111) | e(21589) | e(21556) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)