Properties

Label 862.441
Modulus 862862
Conductor 431431
Order 215215
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(862, base_ring=CyclotomicField(430)) M = H._module chi = DirichletCharacter(H, M([132]))
 
Copy content pari:[g,chi] = znchar(Mod(441,862))
 

Basic properties

Modulus: 862862
Conductor: 431431
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 215215
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ431(10,)\chi_{431}(10,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 862.g

χ862(5,)\chi_{862}(5,\cdot) χ862(11,)\chi_{862}(11,\cdot) χ862(15,)\chi_{862}(15,\cdot) χ862(19,)\chi_{862}(19,\cdot) χ862(23,)\chi_{862}(23,\cdot) χ862(25,)\chi_{862}(25,\cdot) χ862(29,)\chi_{862}(29,\cdot) χ862(33,)\chi_{862}(33,\cdot) χ862(41,)\chi_{862}(41,\cdot) χ862(45,)\chi_{862}(45,\cdot) χ862(49,)\chi_{862}(49,\cdot) χ862(53,)\chi_{862}(53,\cdot) χ862(57,)\chi_{862}(57,\cdot) χ862(59,)\chi_{862}(59,\cdot) χ862(61,)\chi_{862}(61,\cdot) χ862(69,)\chi_{862}(69,\cdot) χ862(75,)\chi_{862}(75,\cdot) χ862(87,)\chi_{862}(87,\cdot) χ862(91,)\chi_{862}(91,\cdot) χ862(97,)\chi_{862}(97,\cdot) χ862(99,)\chi_{862}(99,\cdot) χ862(109,)\chi_{862}(109,\cdot) χ862(115,)\chi_{862}(115,\cdot) χ862(119,)\chi_{862}(119,\cdot) χ862(121,)\chi_{862}(121,\cdot) χ862(123,)\chi_{862}(123,\cdot) χ862(125,)\chi_{862}(125,\cdot) χ862(135,)\chi_{862}(135,\cdot) χ862(139,)\chi_{862}(139,\cdot) χ862(147,)\chi_{862}(147,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ215)\Q(\zeta_{215})
Fixed field: Number field defined by a degree 215 polynomial (not computed)

Values on generators

77e(66215)e\left(\frac{66}{215}\right)

First values

aa 1-11133557799111113131515171719192121
χ862(441,a) \chi_{ 862 }(441, a) 1111e(4143)e\left(\frac{41}{43}\right)e(212215)e\left(\frac{212}{215}\right)e(66215)e\left(\frac{66}{215}\right)e(3943)e\left(\frac{39}{43}\right)e(68215)e\left(\frac{68}{215}\right)e(57215)e\left(\frac{57}{215}\right)e(202215)e\left(\frac{202}{215}\right)e(111215)e\left(\frac{111}{215}\right)e(89215)e\left(\frac{89}{215}\right)e(56215)e\left(\frac{56}{215}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ862(441,a)   \chi_{ 862 }(441,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ862(441,))   \tau_{ a }( \chi_{ 862 }(441,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ862(441,),χ862(n,))   J(\chi_{ 862 }(441,·),\chi_{ 862 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ862(441,))  K(a,b,\chi_{ 862 }(441,·)) \; at   a,b=\; a,b = e.g. 1,2