Properties

Label 862.441
Modulus $862$
Conductor $431$
Order $215$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(862, base_ring=CyclotomicField(430))
 
M = H._module
 
chi = DirichletCharacter(H, M([132]))
 
pari: [g,chi] = znchar(Mod(441,862))
 

Basic properties

Modulus: \(862\)
Conductor: \(431\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(215\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{431}(10,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 862.g

\(\chi_{862}(5,\cdot)\) \(\chi_{862}(11,\cdot)\) \(\chi_{862}(15,\cdot)\) \(\chi_{862}(19,\cdot)\) \(\chi_{862}(23,\cdot)\) \(\chi_{862}(25,\cdot)\) \(\chi_{862}(29,\cdot)\) \(\chi_{862}(33,\cdot)\) \(\chi_{862}(41,\cdot)\) \(\chi_{862}(45,\cdot)\) \(\chi_{862}(49,\cdot)\) \(\chi_{862}(53,\cdot)\) \(\chi_{862}(57,\cdot)\) \(\chi_{862}(59,\cdot)\) \(\chi_{862}(61,\cdot)\) \(\chi_{862}(69,\cdot)\) \(\chi_{862}(75,\cdot)\) \(\chi_{862}(87,\cdot)\) \(\chi_{862}(91,\cdot)\) \(\chi_{862}(97,\cdot)\) \(\chi_{862}(99,\cdot)\) \(\chi_{862}(109,\cdot)\) \(\chi_{862}(115,\cdot)\) \(\chi_{862}(119,\cdot)\) \(\chi_{862}(121,\cdot)\) \(\chi_{862}(123,\cdot)\) \(\chi_{862}(125,\cdot)\) \(\chi_{862}(135,\cdot)\) \(\chi_{862}(139,\cdot)\) \(\chi_{862}(147,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{215})$
Fixed field: Number field defined by a degree 215 polynomial (not computed)

Values on generators

\(7\) → \(e\left(\frac{66}{215}\right)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 862 }(441, a) \) \(1\)\(1\)\(e\left(\frac{41}{43}\right)\)\(e\left(\frac{212}{215}\right)\)\(e\left(\frac{66}{215}\right)\)\(e\left(\frac{39}{43}\right)\)\(e\left(\frac{68}{215}\right)\)\(e\left(\frac{57}{215}\right)\)\(e\left(\frac{202}{215}\right)\)\(e\left(\frac{111}{215}\right)\)\(e\left(\frac{89}{215}\right)\)\(e\left(\frac{56}{215}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 862 }(441,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 862 }(441,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 862 }(441,·),\chi_{ 862 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 862 }(441,·)) \;\) at \(\; a,b = \) e.g. 1,2