Properties

Label 925.141
Modulus 925925
Conductor 925925
Order 9090
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(925, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,35]))
 
pari: [g,chi] = znchar(Mod(141,925))
 

Basic properties

Modulus: 925925
Conductor: 925925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9090
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 925.ca

χ925(21,)\chi_{925}(21,\cdot) χ925(41,)\chi_{925}(41,\cdot) χ925(136,)\chi_{925}(136,\cdot) χ925(141,)\chi_{925}(141,\cdot) χ925(206,)\chi_{925}(206,\cdot) χ925(321,)\chi_{925}(321,\cdot) χ925(336,)\chi_{925}(336,\cdot) χ925(361,)\chi_{925}(361,\cdot) χ925(391,)\chi_{925}(391,\cdot) χ925(411,)\chi_{925}(411,\cdot) χ925(506,)\chi_{925}(506,\cdot) χ925(511,)\chi_{925}(511,\cdot) χ925(521,)\chi_{925}(521,\cdot) χ925(546,)\chi_{925}(546,\cdot) χ925(596,)\chi_{925}(596,\cdot) χ925(691,)\chi_{925}(691,\cdot) χ925(696,)\chi_{925}(696,\cdot) χ925(706,)\chi_{925}(706,\cdot) χ925(731,)\chi_{925}(731,\cdot) χ925(761,)\chi_{925}(761,\cdot) χ925(781,)\chi_{925}(781,\cdot) χ925(881,)\chi_{925}(881,\cdot) χ925(891,)\chi_{925}(891,\cdot) χ925(916,)\chi_{925}(916,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

(852,76)(852,76)(e(15),e(718))(e\left(\frac{1}{5}\right),e\left(\frac{7}{18}\right))

First values

aa 1-11122334466778899111112121313
χ925(141,a) \chi_{ 925 }(141, a) 1111e(5390)e\left(\frac{53}{90}\right)e(2345)e\left(\frac{23}{45}\right)e(845)e\left(\frac{8}{45}\right)e(110)e\left(\frac{1}{10}\right)e(49)e\left(\frac{4}{9}\right)e(2330)e\left(\frac{23}{30}\right)e(145)e\left(\frac{1}{45}\right)e(1315)e\left(\frac{13}{15}\right)e(3145)e\left(\frac{31}{45}\right)e(790)e\left(\frac{7}{90}\right)
sage: chi.jacobi_sum(n)
 
χ925(141,a)   \chi_{ 925 }(141,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ925(141,))   \tau_{ a }( \chi_{ 925 }(141,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ925(141,),χ925(n,))   J(\chi_{ 925 }(141,·),\chi_{ 925 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ925(141,))  K(a,b,\chi_{ 925 }(141,·)) \; at   a,b=\; a,b = e.g. 1,2