Properties

Label 925.141
Modulus $925$
Conductor $925$
Order $90$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(925, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,35]))
 
pari: [g,chi] = znchar(Mod(141,925))
 

Basic properties

Modulus: \(925\)
Conductor: \(925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 925.ca

\(\chi_{925}(21,\cdot)\) \(\chi_{925}(41,\cdot)\) \(\chi_{925}(136,\cdot)\) \(\chi_{925}(141,\cdot)\) \(\chi_{925}(206,\cdot)\) \(\chi_{925}(321,\cdot)\) \(\chi_{925}(336,\cdot)\) \(\chi_{925}(361,\cdot)\) \(\chi_{925}(391,\cdot)\) \(\chi_{925}(411,\cdot)\) \(\chi_{925}(506,\cdot)\) \(\chi_{925}(511,\cdot)\) \(\chi_{925}(521,\cdot)\) \(\chi_{925}(546,\cdot)\) \(\chi_{925}(596,\cdot)\) \(\chi_{925}(691,\cdot)\) \(\chi_{925}(696,\cdot)\) \(\chi_{925}(706,\cdot)\) \(\chi_{925}(731,\cdot)\) \(\chi_{925}(761,\cdot)\) \(\chi_{925}(781,\cdot)\) \(\chi_{925}(881,\cdot)\) \(\chi_{925}(891,\cdot)\) \(\chi_{925}(916,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((852,76)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 925 }(141, a) \) \(1\)\(1\)\(e\left(\frac{53}{90}\right)\)\(e\left(\frac{23}{45}\right)\)\(e\left(\frac{8}{45}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{45}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{31}{45}\right)\)\(e\left(\frac{7}{90}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 925 }(141,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 925 }(141,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 925 }(141,·),\chi_{ 925 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 925 }(141,·)) \;\) at \(\; a,b = \) e.g. 1,2