sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(931, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([26,21]))
pari:[g,chi] = znchar(Mod(835,931))
Modulus: | 931 | |
Conductor: | 931 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 42 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ931(37,⋅)
χ931(151,⋅)
χ931(170,⋅)
χ931(284,⋅)
χ931(303,⋅)
χ931(417,⋅)
χ931(436,⋅)
χ931(550,⋅)
χ931(683,⋅)
χ931(702,⋅)
χ931(816,⋅)
χ931(835,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(248,344) → (e(2113),−1)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ931(835,a) |
−1 | 1 | e(4225) | e(425) | e(214) | e(2120) | e(75) | e(1411) | e(215) | e(4223) | e(2116) | e(4213) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)