from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(931, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([26,21]))
pari: [g,chi] = znchar(Mod(835,931))
Basic properties
Modulus: | \(931\) | |
Conductor: | \(931\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 931.bq
\(\chi_{931}(37,\cdot)\) \(\chi_{931}(151,\cdot)\) \(\chi_{931}(170,\cdot)\) \(\chi_{931}(284,\cdot)\) \(\chi_{931}(303,\cdot)\) \(\chi_{931}(417,\cdot)\) \(\chi_{931}(436,\cdot)\) \(\chi_{931}(550,\cdot)\) \(\chi_{931}(683,\cdot)\) \(\chi_{931}(702,\cdot)\) \(\chi_{931}(816,\cdot)\) \(\chi_{931}(835,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((248,344)\) → \((e\left(\frac{13}{21}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 931 }(835, a) \) | \(-1\) | \(1\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)