Properties

Modulus $945$
Structure \(C_{2}\times C_{6}\times C_{36}\)
Order $432$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(945)
 
pari: g = idealstar(,945,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 432
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{6}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{945}(596,\cdot)$, $\chi_{945}(757,\cdot)$, $\chi_{945}(136,\cdot)$

First 32 of 432 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(17\) \(19\) \(22\) \(23\)
\(\chi_{945}(1,\cdot)\) 945.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{945}(2,\cdot)\) 945.do 36 yes \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{945}(4,\cdot)\) 945.db 18 yes \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{945}(8,\cdot)\) 945.cf 12 no \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{945}(11,\cdot)\) 945.cv 18 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{945}(13,\cdot)\) 945.di 36 yes \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{945}(16,\cdot)\) 945.bs 9 no \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{945}(17,\cdot)\) 945.bz 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\)
\(\chi_{945}(19,\cdot)\) 945.bn 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{945}(22,\cdot)\) 945.dp 36 no \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{945}(23,\cdot)\) 945.dh 36 yes \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(i\) \(-1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{945}(26,\cdot)\) 945.bj 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{945}(29,\cdot)\) 945.cn 18 no \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{945}(31,\cdot)\) 945.cr 18 no \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{945}(32,\cdot)\) 945.do 36 yes \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{945}(34,\cdot)\) 945.cw 18 yes \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{945}(37,\cdot)\) 945.bw 12 no \(-1\) \(1\) \(i\) \(-1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{945}(38,\cdot)\) 945.dq 36 yes \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(-i\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{945}(41,\cdot)\) 945.cz 18 no \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{945}(43,\cdot)\) 945.dp 36 no \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{945}(44,\cdot)\) 945.br 6 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{945}(46,\cdot)\) 945.l 3 no \(1\) \(1\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{945}(47,\cdot)\) 945.dj 36 yes \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{945}(52,\cdot)\) 945.dr 36 yes \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(-i\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{945}(53,\cdot)\) 945.ch 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{945}(58,\cdot)\) 945.dg 36 yes \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(-i\) \(-1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{945}(59,\cdot)\) 945.cq 18 yes \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{945}(61,\cdot)\) 945.cr 18 no \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{945}(62,\cdot)\) 945.ci 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{945}(64,\cdot)\) 945.bh 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{945}(67,\cdot)\) 945.dn 36 yes \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{945}(68,\cdot)\) 945.dq 36 yes \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(-i\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{36}\right)\)
Click here to search among the remaining 400 characters.