sage: H = DirichletGroup(945)
pari: g = idealstar(,945,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 432 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{945}(596,\cdot)$, $\chi_{945}(757,\cdot)$, $\chi_{945}(136,\cdot)$ |
First 32 of 432 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{945}(1,\cdot)\) | 945.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{945}(2,\cdot)\) | 945.do | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) |
\(\chi_{945}(4,\cdot)\) | 945.db | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{945}(8,\cdot)\) | 945.cf | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{945}(11,\cdot)\) | 945.cv | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{945}(13,\cdot)\) | 945.di | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) |
\(\chi_{945}(16,\cdot)\) | 945.bs | 9 | no | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{945}(17,\cdot)\) | 945.bz | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) |
\(\chi_{945}(19,\cdot)\) | 945.bn | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{945}(22,\cdot)\) | 945.dp | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) |
\(\chi_{945}(23,\cdot)\) | 945.dh | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) |
\(\chi_{945}(26,\cdot)\) | 945.bj | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{945}(29,\cdot)\) | 945.cn | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{945}(31,\cdot)\) | 945.cr | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{945}(32,\cdot)\) | 945.do | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) |
\(\chi_{945}(34,\cdot)\) | 945.cw | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{945}(37,\cdot)\) | 945.bw | 12 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{945}(38,\cdot)\) | 945.dq | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) |
\(\chi_{945}(41,\cdot)\) | 945.cz | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{945}(43,\cdot)\) | 945.dp | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) |
\(\chi_{945}(44,\cdot)\) | 945.br | 6 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{945}(46,\cdot)\) | 945.l | 3 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{945}(47,\cdot)\) | 945.dj | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) |
\(\chi_{945}(52,\cdot)\) | 945.dr | 36 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) |
\(\chi_{945}(53,\cdot)\) | 945.ch | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{945}(58,\cdot)\) | 945.dg | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) |
\(\chi_{945}(59,\cdot)\) | 945.cq | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{945}(61,\cdot)\) | 945.cr | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{945}(62,\cdot)\) | 945.ci | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{945}(64,\cdot)\) | 945.bh | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{945}(67,\cdot)\) | 945.dn | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) |
\(\chi_{945}(68,\cdot)\) | 945.dq | 36 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) |