Properties

Label 967.149
Modulus 967967
Conductor 967967
Order 483483
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(966))
 
M = H._module
 
chi = DirichletCharacter(H, M([320]))
 
pari: [g,chi] = znchar(Mod(149,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 483483
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.o

χ967(2,)\chi_{967}(2,\cdot) χ967(4,)\chi_{967}(4,\cdot) χ967(16,)\chi_{967}(16,\cdot) χ967(18,)\chi_{967}(18,\cdot) χ967(21,)\chi_{967}(21,\cdot) χ967(22,)\chi_{967}(22,\cdot) χ967(25,)\chi_{967}(25,\cdot) χ967(31,)\chi_{967}(31,\cdot) χ967(32,)\chi_{967}(32,\cdot) χ967(34,)\chi_{967}(34,\cdot) χ967(35,)\chi_{967}(35,\cdot) χ967(36,)\chi_{967}(36,\cdot) χ967(44,)\chi_{967}(44,\cdot) χ967(49,)\chi_{967}(49,\cdot) χ967(50,)\chi_{967}(50,\cdot) χ967(57,)\chi_{967}(57,\cdot) χ967(59,)\chi_{967}(59,\cdot) χ967(60,)\chi_{967}(60,\cdot) χ967(65,)\chi_{967}(65,\cdot) χ967(70,)\chi_{967}(70,\cdot) χ967(83,)\chi_{967}(83,\cdot) χ967(84,)\chi_{967}(84,\cdot) χ967(91,)\chi_{967}(91,\cdot) χ967(98,)\chi_{967}(98,\cdot) χ967(101,)\chi_{967}(101,\cdot) χ967(103,)\chi_{967}(103,\cdot) χ967(106,)\chi_{967}(106,\cdot) χ967(111,)\chi_{967}(111,\cdot) χ967(114,)\chi_{967}(114,\cdot) χ967(115,)\chi_{967}(115,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ483)\Q(\zeta_{483})
Fixed field: Number field defined by a degree 483 polynomial (not computed)

Values on generators

55e(160483)e\left(\frac{160}{483}\right)

First values

aa 1-111223344556677889910101111
χ967(149,a) \chi_{ 967 }(149, a) 1111e(431483)e\left(\frac{431}{483}\right)e(82161)e\left(\frac{82}{161}\right)e(379483)e\left(\frac{379}{483}\right)e(160483)e\left(\frac{160}{483}\right)e(194483)e\left(\frac{194}{483}\right)e(94483)e\left(\frac{94}{483}\right)e(109161)e\left(\frac{109}{161}\right)e(3161)e\left(\frac{3}{161}\right)e(36161)e\left(\frac{36}{161}\right)e(26161)e\left(\frac{26}{161}\right)
sage: chi.jacobi_sum(n)
 
χ967(149,a)   \chi_{ 967 }(149,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(149,))   \tau_{ a }( \chi_{ 967 }(149,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(149,),χ967(n,))   J(\chi_{ 967 }(149,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(149,))  K(a,b,\chi_{ 967 }(149,·)) \; at   a,b=\; a,b = e.g. 1,2