from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(967, base_ring=CyclotomicField(966))
M = H._module
chi = DirichletCharacter(H, M([800]))
pari: [g,chi] = znchar(Mod(169,967))
χ967(2,⋅)
χ967(4,⋅)
χ967(16,⋅)
χ967(18,⋅)
χ967(21,⋅)
χ967(22,⋅)
χ967(25,⋅)
χ967(31,⋅)
χ967(32,⋅)
χ967(34,⋅)
χ967(35,⋅)
χ967(36,⋅)
χ967(44,⋅)
χ967(49,⋅)
χ967(50,⋅)
χ967(57,⋅)
χ967(59,⋅)
χ967(60,⋅)
χ967(65,⋅)
χ967(70,⋅)
χ967(83,⋅)
χ967(84,⋅)
χ967(91,⋅)
χ967(98,⋅)
χ967(101,⋅)
χ967(103,⋅)
χ967(106,⋅)
χ967(111,⋅)
χ967(114,⋅)
χ967(115,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
5 → e(483400)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ967(169,a) |
1 | 1 | e(483353) | e(16144) | e(483223) | e(483400) | e(4832) | e(483235) | e(16131) | e(16188) | e(16190) | e(16165) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)