sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(968, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,104]))
pari:[g,chi] = znchar(Mod(467,968))
Modulus: | 968 | |
Conductor: | 968 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 110 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ968(59,⋅)
χ968(75,⋅)
χ968(91,⋅)
χ968(115,⋅)
χ968(147,⋅)
χ968(163,⋅)
χ968(179,⋅)
χ968(203,⋅)
χ968(235,⋅)
χ968(267,⋅)
χ968(291,⋅)
χ968(339,⋅)
χ968(355,⋅)
χ968(379,⋅)
χ968(411,⋅)
χ968(427,⋅)
χ968(443,⋅)
χ968(467,⋅)
χ968(499,⋅)
χ968(515,⋅)
χ968(531,⋅)
χ968(555,⋅)
χ968(587,⋅)
χ968(603,⋅)
χ968(619,⋅)
χ968(643,⋅)
χ968(675,⋅)
χ968(691,⋅)
χ968(707,⋅)
χ968(731,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(727,485,849) → (−1,−1,e(5552))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 13 | 15 | 17 | 19 | 21 | 23 |
χ968(467,a) |
−1 | 1 | e(51) | e(11051) | e(11013) | e(52) | e(110109) | e(11073) | e(5518) | e(5526) | e(227) | e(2215) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)