Properties

Label 968.467
Modulus 968968
Conductor 968968
Order 110110
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(968, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,55,104]))
 
Copy content pari:[g,chi] = znchar(Mod(467,968))
 

Basic properties

Modulus: 968968
Conductor: 968968
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 110110
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 968.z

χ968(59,)\chi_{968}(59,\cdot) χ968(75,)\chi_{968}(75,\cdot) χ968(91,)\chi_{968}(91,\cdot) χ968(115,)\chi_{968}(115,\cdot) χ968(147,)\chi_{968}(147,\cdot) χ968(163,)\chi_{968}(163,\cdot) χ968(179,)\chi_{968}(179,\cdot) χ968(203,)\chi_{968}(203,\cdot) χ968(235,)\chi_{968}(235,\cdot) χ968(267,)\chi_{968}(267,\cdot) χ968(291,)\chi_{968}(291,\cdot) χ968(339,)\chi_{968}(339,\cdot) χ968(355,)\chi_{968}(355,\cdot) χ968(379,)\chi_{968}(379,\cdot) χ968(411,)\chi_{968}(411,\cdot) χ968(427,)\chi_{968}(427,\cdot) χ968(443,)\chi_{968}(443,\cdot) χ968(467,)\chi_{968}(467,\cdot) χ968(499,)\chi_{968}(499,\cdot) χ968(515,)\chi_{968}(515,\cdot) χ968(531,)\chi_{968}(531,\cdot) χ968(555,)\chi_{968}(555,\cdot) χ968(587,)\chi_{968}(587,\cdot) χ968(603,)\chi_{968}(603,\cdot) χ968(619,)\chi_{968}(619,\cdot) χ968(643,)\chi_{968}(643,\cdot) χ968(675,)\chi_{968}(675,\cdot) χ968(691,)\chi_{968}(691,\cdot) χ968(707,)\chi_{968}(707,\cdot) χ968(731,)\chi_{968}(731,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(727,485,849)(727,485,849)(1,1,e(5255))(-1,-1,e\left(\frac{52}{55}\right))

First values

aa 1-11133557799131315151717191921212323
χ968(467,a) \chi_{ 968 }(467, a) 1-111e(15)e\left(\frac{1}{5}\right)e(51110)e\left(\frac{51}{110}\right)e(13110)e\left(\frac{13}{110}\right)e(25)e\left(\frac{2}{5}\right)e(109110)e\left(\frac{109}{110}\right)e(73110)e\left(\frac{73}{110}\right)e(1855)e\left(\frac{18}{55}\right)e(2655)e\left(\frac{26}{55}\right)e(722)e\left(\frac{7}{22}\right)e(1522)e\left(\frac{15}{22}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ968(467,a)   \chi_{ 968 }(467,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ968(467,))   \tau_{ a }( \chi_{ 968 }(467,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ968(467,),χ968(n,))   J(\chi_{ 968 }(467,·),\chi_{ 968 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ968(467,))  K(a,b,\chi_{ 968 }(467,·)) \; at   a,b=\; a,b = e.g. 1,2