Properties

Label 968.467
Modulus $968$
Conductor $968$
Order $110$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,55,104]))
 
pari: [g,chi] = znchar(Mod(467,968))
 

Basic properties

Modulus: \(968\)
Conductor: \(968\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 968.z

\(\chi_{968}(59,\cdot)\) \(\chi_{968}(75,\cdot)\) \(\chi_{968}(91,\cdot)\) \(\chi_{968}(115,\cdot)\) \(\chi_{968}(147,\cdot)\) \(\chi_{968}(163,\cdot)\) \(\chi_{968}(179,\cdot)\) \(\chi_{968}(203,\cdot)\) \(\chi_{968}(235,\cdot)\) \(\chi_{968}(267,\cdot)\) \(\chi_{968}(291,\cdot)\) \(\chi_{968}(339,\cdot)\) \(\chi_{968}(355,\cdot)\) \(\chi_{968}(379,\cdot)\) \(\chi_{968}(411,\cdot)\) \(\chi_{968}(427,\cdot)\) \(\chi_{968}(443,\cdot)\) \(\chi_{968}(467,\cdot)\) \(\chi_{968}(499,\cdot)\) \(\chi_{968}(515,\cdot)\) \(\chi_{968}(531,\cdot)\) \(\chi_{968}(555,\cdot)\) \(\chi_{968}(587,\cdot)\) \(\chi_{968}(603,\cdot)\) \(\chi_{968}(619,\cdot)\) \(\chi_{968}(643,\cdot)\) \(\chi_{968}(675,\cdot)\) \(\chi_{968}(691,\cdot)\) \(\chi_{968}(707,\cdot)\) \(\chi_{968}(731,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((727,485,849)\) → \((-1,-1,e\left(\frac{52}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 968 }(467, a) \) \(-1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{51}{110}\right)\)\(e\left(\frac{13}{110}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{109}{110}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{18}{55}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{15}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 968 }(467,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 968 }(467,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 968 }(467,·),\chi_{ 968 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 968 }(467,·)) \;\) at \(\; a,b = \) e.g. 1,2