from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(99, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([20,3]))
pari: [g,chi] = znchar(Mod(79,99))
Basic properties
Modulus: | \(99\) | |
Conductor: | \(99\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 99.o
\(\chi_{99}(7,\cdot)\) \(\chi_{99}(13,\cdot)\) \(\chi_{99}(40,\cdot)\) \(\chi_{99}(52,\cdot)\) \(\chi_{99}(61,\cdot)\) \(\chi_{99}(79,\cdot)\) \(\chi_{99}(85,\cdot)\) \(\chi_{99}(94,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 30.0.159386923550435671074967363509984324121230045171.1 |
Values on generators
\((56,46)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 99 }(79, a) \) | \(-1\) | \(1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)