Learn more

The database currently contains 767,505 elliptic curves in 350,509 isogeny classes, over 423 number fields of degree 2 to 6. Elliptic curves defined over Q\mathbb{Q} are contained in a separate database. Here are some further statistics.

Browse

By real quadratic field: Q(2)\Q(\sqrt{2})    Q(3)\Q(\sqrt{3})    Q(5)\Q(\sqrt{5})    Q(6)\Q(\sqrt{6})    Q(7)\Q(\sqrt{7})    Q(10)\Q(\sqrt{10})    Q(11)\Q(\sqrt{11})    Q(13)\Q(\sqrt{13})    Q(14)\Q(\sqrt{14})    Q(15)\Q(\sqrt{15})    \cdots
By imaginary quadratic field: Q(1)\Q(\sqrt{-1})    Q(2)\Q(\sqrt{-2})    Q(3)\Q(\sqrt{-3})    Q(5)\Q(\sqrt{-5})    Q(6)\Q(\sqrt{-6})    Q(7)\Q(\sqrt{-7})    Q(10)\Q(\sqrt{-10})    Q(11)\Q(\sqrt{-11})    Q(13)\Q(\sqrt{-13})    \cdots
By cubic field: 3.1.23.1   Q(ζ7)+\Q(\zeta_{7})^+   Q(ζ9)+\Q(\zeta_{9})^+   3.3.148.1   3.3.169.1   3.3.229.1   3.3.257.1   3.3.316.1   \cdots
By totally real quartic field: 4.4.725.1   Q(ζ15)+\Q(\zeta_{15})^+   Q(2,5)\Q(\sqrt{2}, \sqrt{5})   4.4.1957.1   Q(ζ20)+\Q(\zeta_{20})^+   Q(ζ16)+\Q(\zeta_{16})^+   4.4.2225.1   Q(2,3)\Q(\sqrt{2}, \sqrt{3})   \cdots
By totally real quintic field: Q(ζ11)+\Q(\zeta_{11})^+   5.5.24217.1   5.5.36497.1   5.5.38569.1   5.5.65657.1   5.5.70601.1   5.5.81509.1   \cdots
By totally real sextic field: 6.6.300125.1   Q(ζ13)+\Q(\zeta_{13})^+   6.6.434581.1   Q(ζ21)+\Q(\zeta_{21})^+   6.6.485125.1   6.6.592661.1   6.6.703493.1   \cdots
Some interesting elliptic curves or a random elliptic curve

Search

Find

Label
e.g. 2.2.5.1-31.1-a1 or 2.2.5.1-31.1-a

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.