Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
22275.1-a1 22275.1-a \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.821696092$ 0.495501387 \( \frac{53585}{121} a + \frac{497055}{121} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 29 a + 57\) , \( -66 a + 198\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(29a+57\right){x}-66a+198$
22275.1-a2 22275.1-a \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.465088277$ 0.495501387 \( -\frac{32585}{11} a + \frac{82320}{11} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( -6 a - 3\) , \( -9 a + 10\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a-3\right){x}-9a+10$
22275.1-b1 22275.1-b \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $6.185941732$ $0.098745448$ 4.420158156 \( \frac{288322789502659}{133974300625} a - \frac{241975044280128}{133974300625} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 2612 a - 4923\) , \( -96076 a + 130747\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2612a-4923\right){x}-96076a+130747$
22275.1-b2 22275.1-b \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $18.55782519$ $0.032915149$ 4.420158156 \( -\frac{4761132976229511855379}{324951171875} a + \frac{19904467562618343492243}{324951171875} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 205287 a - 422373\) , \( -69676884 a + 76785094\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(205287a-422373\right){x}-69676884a+76785094$
22275.1-c1 22275.1-c \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.592815284$ $1.590343894$ 2.274071327 \( -\frac{6346}{11} a - \frac{36735}{11} \) \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( 10 a + 3\) , \( a - 67\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a+3\right){x}+a-67$
22275.1-d1 22275.1-d \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.837368319$ 3.323924355 \( \frac{53585}{121} a + \frac{497055}{121} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( -10 a + 15\) , \( 4 a - 30\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a+15\right){x}+4a-30$
22275.1-d2 22275.1-d \(\Q(\sqrt{-11}) \) \( 3^{4} \cdot 5^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.512104959$ 3.323924355 \( -\frac{32585}{11} a + \frac{82320}{11} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 0\) , \( 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+1$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.