Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
22275.1-a1 22275.1-a Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.8216960920.821696092 0.495501387 53585121a+497055121 \frac{53585}{121} a + \frac{497055}{121} [1 \bigl[1 , a1 a - 1 , 0 0 , 29a+57 29 a + 57 , 66a+198] -66 a + 198\bigr] y2+xy=x3+(a1)x2+(29a+57)x66a+198{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(29a+57\right){x}-66a+198
22275.1-a2 22275.1-a Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.4650882772.465088277 0.495501387 3258511a+8232011 -\frac{32585}{11} a + \frac{82320}{11} [1 \bigl[1 , a1 a - 1 , 0 0 , 6a3 -6 a - 3 , 9a+10] -9 a + 10\bigr] y2+xy=x3+(a1)x2+(6a3)x9a+10{y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-6a-3\right){x}-9a+10
22275.1-b1 22275.1-b Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 6.1859417326.185941732 0.0987454480.098745448 4.420158156 288322789502659133974300625a241975044280128133974300625 \frac{288322789502659}{133974300625} a - \frac{241975044280128}{133974300625} [1 \bigl[1 , a1 -a - 1 , a a , 2612a4923 2612 a - 4923 , 96076a+130747] -96076 a + 130747\bigr] y2+xy+ay=x3+(a1)x2+(2612a4923)x96076a+130747{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2612a-4923\right){x}-96076a+130747
22275.1-b2 22275.1-b Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 18.5578251918.55782519 0.0329151490.032915149 4.420158156 4761132976229511855379324951171875a+19904467562618343492243324951171875 -\frac{4761132976229511855379}{324951171875} a + \frac{19904467562618343492243}{324951171875} [1 \bigl[1 , a1 -a - 1 , a a , 205287a422373 205287 a - 422373 , 69676884a+76785094] -69676884 a + 76785094\bigr] y2+xy+ay=x3+(a1)x2+(205287a422373)x69676884a+76785094{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(205287a-422373\right){x}-69676884a+76785094
22275.1-c1 22275.1-c Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.5928152840.592815284 1.5903438941.590343894 2.274071327 634611a3673511 -\frac{6346}{11} a - \frac{36735}{11} [a+1 \bigl[a + 1 , a1 a - 1 , a a , 10a+3 10 a + 3 , a67] a - 67\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(10a+3)x+a67{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a+3\right){x}+a-67
22275.1-d1 22275.1-d Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.8373683191.837368319 3.323924355 53585121a+497055121 \frac{53585}{121} a + \frac{497055}{121} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 10a+15 -10 a + 15 , 4a30] 4 a - 30\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(10a+15)x+4a30{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a+15\right){x}+4a-30
22275.1-d2 22275.1-d Q(11)\Q(\sqrt{-11}) 345211 3^{4} \cdot 5^{2} \cdot 11 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 5.5121049595.512104959 3.323924355 3258511a+8232011 -\frac{32585}{11} a + \frac{82320}{11} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 0 0 , 1] 1\bigr] y2+(a+1)xy+ay=x3+(a1)x2+1{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+1
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.