Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
31752.1-a1 |
31752.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{10} \cdot 3^{16} \cdot 7^{6} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.582969403$ |
1.165938807 |
\( \frac{63821054}{3087} a - \frac{1625104}{343} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -19 i - 240\) , \( 98 i + 1438\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-19i-240\right){x}+98i+1438$ |
31752.1-a2 |
31752.1-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{11} \cdot 3^{14} \cdot 7^{12} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.291484701$ |
1.165938807 |
\( \frac{36618425}{352947} a - \frac{212113}{1029} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -289 i + 30\) , \( -2224 i + 5164\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-289i+30\right){x}-2224i+5164$ |
31752.1-b1 |
31752.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.154625521$ |
$3.339572940$ |
4.131065670 |
\( \frac{11664}{49} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i - 3\) , \( -5 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}-5i$ |
31752.1-b2 |
31752.1-b |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.154625521$ |
$3.339572940$ |
4.131065670 |
\( \frac{55296}{7} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( -5\bigr] \) |
${y}^2={x}^{3}-6{x}-5$ |
31752.1-c1 |
31752.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 7^{8} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.791183129$ |
$0.657452278$ |
4.161321206 |
\( \frac{11696828}{7203} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -108\) , \( -162 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-108{x}-162i$ |
31752.1-c2 |
31752.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{16} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.791183129$ |
$1.314904556$ |
4.161321206 |
\( \frac{810448}{441} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 27\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}$ |
31752.1-c3 |
31752.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.791183129$ |
$1.314904556$ |
4.161321206 |
\( \frac{2725888}{21} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -66\) , \( 205\bigr] \) |
${y}^2={x}^{3}-66{x}+205$ |
31752.1-c4 |
31752.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{20} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$2$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.791183129$ |
$0.657452278$ |
4.161321206 |
\( \frac{381775972}{567} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 342\) , \( -2268 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+342{x}-2268i$ |
31752.1-d1 |
31752.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.257561760$ |
$2.574730348$ |
2.652608321 |
\( -\frac{55296}{49} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( 9\bigr] \) |
${y}^2={x}^{3}-6{x}+9$ |
31752.1-d2 |
31752.1-d |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.515123520$ |
$2.574730348$ |
2.652608321 |
\( \frac{21882096}{7} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 27\) , \( 70 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}+70i$ |
31752.1-e1 |
31752.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{12} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.284457192$ |
$2.677530478$ |
3.046571210 |
\( \frac{432}{7} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i - 3\) , \( 5 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}+5i$ |
31752.1-e2 |
31752.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{10} \cdot 3^{12} \cdot 7^{8} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.284457192$ |
$0.669382619$ |
3.046571210 |
\( \frac{11090466}{2401} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 132\) , \( -400 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+132\right){x}-400i$ |
31752.1-e3 |
31752.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.568914384$ |
$1.338765239$ |
3.046571210 |
\( \frac{740772}{49} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 42\) , \( 122 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+42\right){x}+122i$ |
31752.1-e4 |
31752.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{10} \cdot 3^{12} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.137828769$ |
$0.669382619$ |
3.046571210 |
\( \frac{1443468546}{7} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 672\) , \( 7052 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+672\right){x}+7052i$ |
31752.1-f1 |
31752.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 7^{8} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.463617288$ |
1.854469154 |
\( -\frac{2725888}{64827} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -66\) , \( -1339\bigr] \) |
${y}^2={x}^{3}-66{x}-1339$ |
31752.1-f2 |
31752.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{36} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.231808644$ |
1.854469154 |
\( \frac{6522128932}{3720087} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 882\) , \( 1652 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+882{x}+1652i$ |
31752.1-f3 |
31752.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{24} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$4$ |
\( 2^{4} \) |
$1$ |
$0.463617288$ |
1.854469154 |
\( \frac{6940769488}{35721} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 567\) , \( -4900 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+567{x}-4900i$ |
31752.1-f4 |
31752.1-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$16$ |
\( 2^{3} \) |
$1$ |
$0.231808644$ |
1.854469154 |
\( \frac{7080974546692}{189} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 9072\) , \( -328090 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+9072{x}-328090i$ |
31752.1-g1 |
31752.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{10} \cdot 3^{16} \cdot 7^{6} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.582969403$ |
1.165938807 |
\( -\frac{63821054}{3087} a - \frac{1625104}{343} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 17 i - 240\) , \( 98 i - 1438\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(17i-240\right){x}+98i-1438$ |
31752.1-g2 |
31752.1-g |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{11} \cdot 3^{14} \cdot 7^{12} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.291484701$ |
1.165938807 |
\( -\frac{36618425}{352947} a - \frac{212113}{1029} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 287 i + 30\) , \( -2224 i - 5164\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(287i+30\right){x}-2224i-5164$ |
31752.1-h1 |
31752.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.013053864$ |
$1.113190980$ |
4.510889699 |
\( \frac{11664}{49} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -21\) , \( -98 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-21{x}-98i$ |
31752.1-h2 |
31752.1-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$2.026107729$ |
$1.113190980$ |
4.510889699 |
\( \frac{55296}{7} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -54\) , \( -135\bigr] \) |
${y}^2={x}^{3}-54{x}-135$ |
31752.1-i1 |
31752.1-i |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.858243449$ |
3.432973797 |
\( -\frac{55296}{49} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -54\) , \( 243\bigr] \) |
${y}^2={x}^{3}-54{x}+243$ |
31752.1-i2 |
31752.1-i |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.858243449$ |
3.432973797 |
\( \frac{21882096}{7} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 249\) , \( 1643 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+249\right){x}+1643i$ |
31752.1-j1 |
31752.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 3^{12} \cdot 7^{2} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.131913095$ |
4.263826191 |
\( -\frac{4}{7} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 0\) , \( 14 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+14i$ |
31752.1-j2 |
31752.1-j |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
31752.1 |
\( 2^{3} \cdot 3^{4} \cdot 7^{2} \) |
\( 2^{10} \cdot 3^{12} \cdot 7^{4} \) |
$2.38568$ |
$(a+1), (3), (7)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.065956547$ |
4.263826191 |
\( \frac{3543122}{49} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 90\) , \( 374 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+90{x}+374i$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.