Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
31752.1-a1 31752.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.582969403$ 1.165938807 \( \frac{63821054}{3087} a - \frac{1625104}{343} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -19 i - 240\) , \( 98 i + 1438\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-19i-240\right){x}+98i+1438$
31752.1-a2 31752.1-a \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.291484701$ 1.165938807 \( \frac{36618425}{352947} a - \frac{212113}{1029} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -289 i + 30\) , \( -2224 i + 5164\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-289i+30\right){x}-2224i+5164$
31752.1-b1 31752.1-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.154625521$ $3.339572940$ 4.131065670 \( \frac{11664}{49} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i - 3\) , \( -5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}-5i$
31752.1-b2 31752.1-b \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.154625521$ $3.339572940$ 4.131065670 \( \frac{55296}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( -5\bigr] \) ${y}^2={x}^{3}-6{x}-5$
31752.1-c1 31752.1-c \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.791183129$ $0.657452278$ 4.161321206 \( \frac{11696828}{7203} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -108\) , \( -162 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-108{x}-162i$
31752.1-c2 31752.1-c \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.791183129$ $1.314904556$ 4.161321206 \( \frac{810448}{441} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 27\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}$
31752.1-c3 31752.1-c \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.791183129$ $1.314904556$ 4.161321206 \( \frac{2725888}{21} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -66\) , \( 205\bigr] \) ${y}^2={x}^{3}-66{x}+205$
31752.1-c4 31752.1-c \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.791183129$ $0.657452278$ 4.161321206 \( \frac{381775972}{567} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 342\) , \( -2268 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+342{x}-2268i$
31752.1-d1 31752.1-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.257561760$ $2.574730348$ 2.652608321 \( -\frac{55296}{49} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -6\) , \( 9\bigr] \) ${y}^2={x}^{3}-6{x}+9$
31752.1-d2 31752.1-d \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.515123520$ $2.574730348$ 2.652608321 \( \frac{21882096}{7} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 27\) , \( 70 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}+70i$
31752.1-e1 31752.1-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.284457192$ $2.677530478$ 3.046571210 \( \frac{432}{7} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i - 3\) , \( 5 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}+5i$
31752.1-e2 31752.1-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.284457192$ $0.669382619$ 3.046571210 \( \frac{11090466}{2401} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 132\) , \( -400 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+132\right){x}-400i$
31752.1-e3 31752.1-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.568914384$ $1.338765239$ 3.046571210 \( \frac{740772}{49} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 42\) , \( 122 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+42\right){x}+122i$
31752.1-e4 31752.1-e \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.137828769$ $0.669382619$ 3.046571210 \( \frac{1443468546}{7} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 672\) , \( 7052 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+672\right){x}+7052i$
31752.1-f1 31752.1-f \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.463617288$ 1.854469154 \( -\frac{2725888}{64827} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -66\) , \( -1339\bigr] \) ${y}^2={x}^{3}-66{x}-1339$
31752.1-f2 31752.1-f \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.231808644$ 1.854469154 \( \frac{6522128932}{3720087} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 882\) , \( 1652 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+882{x}+1652i$
31752.1-f3 31752.1-f \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.463617288$ 1.854469154 \( \frac{6940769488}{35721} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 567\) , \( -4900 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+567{x}-4900i$
31752.1-f4 31752.1-f \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.231808644$ 1.854469154 \( \frac{7080974546692}{189} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 9072\) , \( -328090 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+9072{x}-328090i$
31752.1-g1 31752.1-g \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.582969403$ 1.165938807 \( -\frac{63821054}{3087} a - \frac{1625104}{343} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 17 i - 240\) , \( 98 i - 1438\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(17i-240\right){x}+98i-1438$
31752.1-g2 31752.1-g \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.291484701$ 1.165938807 \( -\frac{36618425}{352947} a - \frac{212113}{1029} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 287 i + 30\) , \( -2224 i - 5164\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(287i+30\right){x}-2224i-5164$
31752.1-h1 31752.1-h \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.013053864$ $1.113190980$ 4.510889699 \( \frac{11664}{49} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -21\) , \( -98 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-21{x}-98i$
31752.1-h2 31752.1-h \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.026107729$ $1.113190980$ 4.510889699 \( \frac{55296}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -54\) , \( -135\bigr] \) ${y}^2={x}^{3}-54{x}-135$
31752.1-i1 31752.1-i \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.858243449$ 3.432973797 \( -\frac{55296}{49} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -54\) , \( 243\bigr] \) ${y}^2={x}^{3}-54{x}+243$
31752.1-i2 31752.1-i \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.858243449$ 3.432973797 \( \frac{21882096}{7} \) \( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 249\) , \( 1643 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+249\right){x}+1643i$
31752.1-j1 31752.1-j \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.131913095$ 4.263826191 \( -\frac{4}{7} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 0\) , \( 14 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+14i$
31752.1-j2 31752.1-j \(\Q(\sqrt{-1}) \) \( 2^{3} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.065956547$ 4.263826191 \( \frac{3543122}{49} \) \( \bigl[i + 1\) , \( i\) , \( 0\) , \( 90\) , \( 374 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+90{x}+374i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.