Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
31752.1-a1 31752.1-a Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5829694030.582969403 1.165938807 638210543087a1625104343 \frac{63821054}{3087} a - \frac{1625104}{343} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 19i240 -19 i - 240 , 98i+1438] 98 i + 1438\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(19i240)x+98i+1438{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-19i-240\right){x}+98i+1438
31752.1-a2 31752.1-a Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2914847010.291484701 1.165938807 36618425352947a2121131029 \frac{36618425}{352947} a - \frac{212113}{1029} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 289i+30 -289 i + 30 , 2224i+5164] -2224 i + 5164\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(289i+30)x2224i+5164{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-289i+30\right){x}-2224i+5164
31752.1-b1 31752.1-b Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1546255210.154625521 3.3395729403.339572940 4.131065670 1166449 \frac{11664}{49} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i3 -i - 3 , 5i] -5 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i3)x5i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}-5i
31752.1-b2 31752.1-b Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1546255210.154625521 3.3395729403.339572940 4.131065670 552967 \frac{55296}{7} [0 \bigl[0 , 0 0 , 0 0 , 6 -6 , 5] -5\bigr] y2=x36x5{y}^2={x}^{3}-6{x}-5
31752.1-c1 31752.1-c Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7911831290.791183129 0.6574522780.657452278 4.161321206 116968287203 \frac{11696828}{7203} [i+1 \bigl[i + 1 , i i , 0 0 , 108 -108 , 162i] -162 i\bigr] y2+(i+1)xy=x3+ix2108x162i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-108{x}-162i
31752.1-c2 31752.1-c Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7911831290.791183129 1.3149045561.314904556 4.161321206 810448441 \frac{810448}{441} [i+1 \bigl[i + 1 , i i , 0 0 , 27 27 , 0] 0\bigr] y2+(i+1)xy=x3+ix2+27x{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}
31752.1-c3 31752.1-c Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7911831290.791183129 1.3149045561.314904556 4.161321206 272588821 \frac{2725888}{21} [0 \bigl[0 , 0 0 , 0 0 , 66 -66 , 205] 205\bigr] y2=x366x+205{y}^2={x}^{3}-66{x}+205
31752.1-c4 31752.1-c Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.7911831290.791183129 0.6574522780.657452278 4.161321206 381775972567 \frac{381775972}{567} [i+1 \bigl[i + 1 , i i , 0 0 , 342 342 , 2268i] -2268 i\bigr] y2+(i+1)xy=x3+ix2+342x2268i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+342{x}-2268i
31752.1-d1 31752.1-d Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2575617600.257561760 2.5747303482.574730348 2.652608321 5529649 -\frac{55296}{49} [0 \bigl[0 , 0 0 , 0 0 , 6 -6 , 9] 9\bigr] y2=x36x+9{y}^2={x}^{3}-6{x}+9
31752.1-d2 31752.1-d Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.5151235200.515123520 2.5747303482.574730348 2.652608321 218820967 \frac{21882096}{7} [i+1 \bigl[i + 1 , i i , 0 0 , 27 27 , 70i] 70 i\bigr] y2+(i+1)xy=x3+ix2+27x+70i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}+70i
31752.1-e1 31752.1-e Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2844571920.284457192 2.6775304782.677530478 3.046571210 4327 \frac{432}{7} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i3 -i - 3 , 5i] 5 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i3)x+5i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}+5i
31752.1-e2 31752.1-e Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2844571920.284457192 0.6693826190.669382619 3.046571210 110904662401 \frac{11090466}{2401} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+132 -i + 132 , 400i] -400 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+132)x400i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+132\right){x}-400i
31752.1-e3 31752.1-e Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5689143840.568914384 1.3387652391.338765239 3.046571210 74077249 \frac{740772}{49} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+42 -i + 42 , 122i] 122 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+42)x+122i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+42\right){x}+122i
31752.1-e4 31752.1-e Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.1378287691.137828769 0.6693826190.669382619 3.046571210 14434685467 \frac{1443468546}{7} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+672 -i + 672 , 7052i] 7052 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+672)x+7052i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+672\right){x}+7052i
31752.1-f1 31752.1-f Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.4636172880.463617288 1.854469154 272588864827 -\frac{2725888}{64827} [0 \bigl[0 , 0 0 , 0 0 , 66 -66 , 1339] -1339\bigr] y2=x366x1339{y}^2={x}^{3}-66{x}-1339
31752.1-f2 31752.1-f Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2318086440.231808644 1.854469154 65221289323720087 \frac{6522128932}{3720087} [i+1 \bigl[i + 1 , i i , 0 0 , 882 882 , 1652i] 1652 i\bigr] y2+(i+1)xy=x3+ix2+882x+1652i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+882{x}+1652i
31752.1-f3 31752.1-f Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4636172880.463617288 1.854469154 694076948835721 \frac{6940769488}{35721} [i+1 \bigl[i + 1 , i i , 0 0 , 567 567 , 4900i] -4900 i\bigr] y2+(i+1)xy=x3+ix2+567x4900i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+567{x}-4900i
31752.1-f4 31752.1-f Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.2318086440.231808644 1.854469154 7080974546692189 \frac{7080974546692}{189} [i+1 \bigl[i + 1 , i i , 0 0 , 9072 9072 , 328090i] -328090 i\bigr] y2+(i+1)xy=x3+ix2+9072x328090i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+9072{x}-328090i
31752.1-g1 31752.1-g Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5829694030.582969403 1.165938807 638210543087a1625104343 -\frac{63821054}{3087} a - \frac{1625104}{343} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 17i240 17 i - 240 , 98i1438] 98 i - 1438\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(17i240)x+98i1438{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(17i-240\right){x}+98i-1438
31752.1-g2 31752.1-g Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2914847010.291484701 1.165938807 36618425352947a2121131029 -\frac{36618425}{352947} a - \frac{212113}{1029} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 287i+30 287 i + 30 , 2224i5164] -2224 i - 5164\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(287i+30)x2224i5164{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(287i+30\right){x}-2224i-5164
31752.1-h1 31752.1-h Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0130538641.013053864 1.1131909801.113190980 4.510889699 1166449 \frac{11664}{49} [i+1 \bigl[i + 1 , i i , 0 0 , 21 -21 , 98i] -98 i\bigr] y2+(i+1)xy=x3+ix221x98i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-21{x}-98i
31752.1-h2 31752.1-h Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.0261077292.026107729 1.1131909801.113190980 4.510889699 552967 \frac{55296}{7} [0 \bigl[0 , 0 0 , 0 0 , 54 -54 , 135] -135\bigr] y2=x354x135{y}^2={x}^{3}-54{x}-135
31752.1-i1 31752.1-i Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8582434490.858243449 3.432973797 5529649 -\frac{55296}{49} [0 \bigl[0 , 0 0 , 0 0 , 54 -54 , 243] 243\bigr] y2=x354x+243{y}^2={x}^{3}-54{x}+243
31752.1-i2 31752.1-i Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8582434490.858243449 3.432973797 218820967 \frac{21882096}{7} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , i+249 -i + 249 , 1643i] 1643 i\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(i+249)x+1643i{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+249\right){x}+1643i
31752.1-j1 31752.1-j Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1319130952.131913095 4.263826191 47 -\frac{4}{7} [i+1 \bigl[i + 1 , i i , 0 0 , 0 0 , 14i] 14 i\bigr] y2+(i+1)xy=x3+ix2+14i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+14i
31752.1-j2 31752.1-j Q(1)\Q(\sqrt{-1}) 233472 2^{3} \cdot 3^{4} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0659565471.065956547 4.263826191 354312249 \frac{3543122}{49} [i+1 \bigl[i + 1 , i i , 0 0 , 90 90 , 374i] 374 i\bigr] y2+(i+1)xy=x3+ix2+90x+374i{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+90{x}+374i
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.