31752.1-a1
31752.1-a
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 10 ⋅ 3 16 ⋅ 7 6 2^{10} \cdot 3^{16} \cdot 7^{6} 2 1 0 ⋅ 3 1 6 ⋅ 7 6
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.582969403 0.582969403 0 . 5 8 2 9 6 9 4 0 3
1.165938807
63821054 3087 a − 1625104 343 \frac{63821054}{3087} a - \frac{1625104}{343} 3 0 8 7 6 3 8 2 1 0 5 4 a − 3 4 3 1 6 2 5 1 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 19 i − 240 -19 i - 240 − 1 9 i − 2 4 0 , 98 i + 1438 ] 98 i + 1438\bigr] 9 8 i + 1 4 3 8 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 19 i − 240 ) x + 98 i + 1438 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-19i-240\right){x}+98i+1438 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 1 9 i − 2 4 0 ) x + 9 8 i + 1 4 3 8
31752.1-a2
31752.1-a
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 11 ⋅ 3 14 ⋅ 7 12 2^{11} \cdot 3^{14} \cdot 7^{12} 2 1 1 ⋅ 3 1 4 ⋅ 7 1 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.291484701 0.291484701 0 . 2 9 1 4 8 4 7 0 1
1.165938807
36618425 352947 a − 212113 1029 \frac{36618425}{352947} a - \frac{212113}{1029} 3 5 2 9 4 7 3 6 6 1 8 4 2 5 a − 1 0 2 9 2 1 2 1 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 289 i + 30 -289 i + 30 − 2 8 9 i + 3 0 , − 2224 i + 5164 ] -2224 i + 5164\bigr] − 2 2 2 4 i + 5 1 6 4 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 289 i + 30 ) x − 2224 i + 5164 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-289i+30\right){x}-2224i+5164 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 2 8 9 i + 3 0 ) x − 2 2 2 4 i + 5 1 6 4
31752.1-b1
31752.1-b
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 6 ⋅ 7 4 2^{4} \cdot 3^{6} \cdot 7^{4} 2 4 ⋅ 3 6 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.154625521 0.154625521 0 . 1 5 4 6 2 5 5 2 1
3.339572940 3.339572940 3 . 3 3 9 5 7 2 9 4 0
4.131065670
11664 49 \frac{11664}{49} 4 9 1 1 6 6 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i − 3 -i - 3 − i − 3 , − 5 i ] -5 i\bigr] − 5 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i − 3 ) x − 5 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}-5i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i − 3 ) x − 5 i
31752.1-b2
31752.1-b
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 6 ⋅ 7 2 2^{8} \cdot 3^{6} \cdot 7^{2} 2 8 ⋅ 3 6 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.154625521 0.154625521 0 . 1 5 4 6 2 5 5 2 1
3.339572940 3.339572940 3 . 3 3 9 5 7 2 9 4 0
4.131065670
55296 7 \frac{55296}{7} 7 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 6 -6 − 6 , − 5 ] -5\bigr] − 5 ]
y 2 = x 3 − 6 x − 5 {y}^2={x}^{3}-6{x}-5 y 2 = x 3 − 6 x − 5
31752.1-c1
31752.1-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 14 ⋅ 7 8 2^{8} \cdot 3^{14} \cdot 7^{8} 2 8 ⋅ 3 1 4 ⋅ 7 8
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
0.791183129 0.791183129 0 . 7 9 1 1 8 3 1 2 9
0.657452278 0.657452278 0 . 6 5 7 4 5 2 2 7 8
4.161321206
11696828 7203 \frac{11696828}{7203} 7 2 0 3 1 1 6 9 6 8 2 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 108 -108 − 1 0 8 , − 162 i ] -162 i\bigr] − 1 6 2 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 − 108 x − 162 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-108{x}-162i y 2 + ( i + 1 ) x y = x 3 + i x 2 − 1 0 8 x − 1 6 2 i
31752.1-c2
31752.1-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 16 ⋅ 7 4 2^{4} \cdot 3^{16} \cdot 7^{4} 2 4 ⋅ 3 1 6 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.791183129 0.791183129 0 . 7 9 1 1 8 3 1 2 9
1.314904556 1.314904556 1 . 3 1 4 9 0 4 5 5 6
4.161321206
810448 441 \frac{810448}{441} 4 4 1 8 1 0 4 4 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 27 27 2 7 , 0 ] 0\bigr] 0 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 27 x {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x} y 2 + ( i + 1 ) x y = x 3 + i x 2 + 2 7 x
31752.1-c3
31752.1-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 14 ⋅ 7 2 2^{8} \cdot 3^{14} \cdot 7^{2} 2 8 ⋅ 3 1 4 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
0.791183129 0.791183129 0 . 7 9 1 1 8 3 1 2 9
1.314904556 1.314904556 1 . 3 1 4 9 0 4 5 5 6
4.161321206
2725888 21 \frac{2725888}{21} 2 1 2 7 2 5 8 8 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 66 -66 − 6 6 , 205 ] 205\bigr] 2 0 5 ]
y 2 = x 3 − 66 x + 205 {y}^2={x}^{3}-66{x}+205 y 2 = x 3 − 6 6 x + 2 0 5
31752.1-c4
31752.1-c
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 20 ⋅ 7 2 2^{8} \cdot 3^{20} \cdot 7^{2} 2 8 ⋅ 3 2 0 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
2 2 2
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.791183129 0.791183129 0 . 7 9 1 1 8 3 1 2 9
0.657452278 0.657452278 0 . 6 5 7 4 5 2 2 7 8
4.161321206
381775972 567 \frac{381775972}{567} 5 6 7 3 8 1 7 7 5 9 7 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 342 342 3 4 2 , − 2268 i ] -2268 i\bigr] − 2 2 6 8 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 342 x − 2268 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+342{x}-2268i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 3 4 2 x − 2 2 6 8 i
31752.1-d1
31752.1-d
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 6 ⋅ 7 4 2^{8} \cdot 3^{6} \cdot 7^{4} 2 8 ⋅ 3 6 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.257561760 0.257561760 0 . 2 5 7 5 6 1 7 6 0
2.574730348 2.574730348 2 . 5 7 4 7 3 0 3 4 8
2.652608321
− 55296 49 -\frac{55296}{49} − 4 9 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 6 -6 − 6 , 9 ] 9\bigr] 9 ]
y 2 = x 3 − 6 x + 9 {y}^2={x}^{3}-6{x}+9 y 2 = x 3 − 6 x + 9
31752.1-d2
31752.1-d
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 6 ⋅ 7 2 2^{4} \cdot 3^{6} \cdot 7^{2} 2 4 ⋅ 3 6 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.515123520 0.515123520 0 . 5 1 5 1 2 3 5 2 0
2.574730348 2.574730348 2 . 5 7 4 7 3 0 3 4 8
2.652608321
21882096 7 \frac{21882096}{7} 7 2 1 8 8 2 0 9 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 27 27 2 7 , 70 i ] 70 i\bigr] 7 0 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 27 x + 70 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+27{x}+70i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 2 7 x + 7 0 i
31752.1-e1
31752.1-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 12 ⋅ 7 2 2^{4} \cdot 3^{12} \cdot 7^{2} 2 4 ⋅ 3 1 2 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.284457192 0.284457192 0 . 2 8 4 4 5 7 1 9 2
2.677530478 2.677530478 2 . 6 7 7 5 3 0 4 7 8
3.046571210
432 7 \frac{432}{7} 7 4 3 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i − 3 -i - 3 − i − 3 , 5 i ] 5 i\bigr] 5 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i − 3 ) x + 5 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i-3\right){x}+5i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i − 3 ) x + 5 i
31752.1-e2
31752.1-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 10 ⋅ 3 12 ⋅ 7 8 2^{10} \cdot 3^{12} \cdot 7^{8} 2 1 0 ⋅ 3 1 2 ⋅ 7 8
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 5 2^{5} 2 5
0.284457192 0.284457192 0 . 2 8 4 4 5 7 1 9 2
0.669382619 0.669382619 0 . 6 6 9 3 8 2 6 1 9
3.046571210
11090466 2401 \frac{11090466}{2401} 2 4 0 1 1 1 0 9 0 4 6 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i + 132 -i + 132 − i + 1 3 2 , − 400 i ] -400 i\bigr] − 4 0 0 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 132 ) x − 400 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+132\right){x}-400i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 1 3 2 ) x − 4 0 0 i
31752.1-e3
31752.1-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 12 ⋅ 7 4 2^{8} \cdot 3^{12} \cdot 7^{4} 2 8 ⋅ 3 1 2 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
0.568914384 0.568914384 0 . 5 6 8 9 1 4 3 8 4
1.338765239 1.338765239 1 . 3 3 8 7 6 5 2 3 9
3.046571210
740772 49 \frac{740772}{49} 4 9 7 4 0 7 7 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i + 42 -i + 42 − i + 4 2 , 122 i ] 122 i\bigr] 1 2 2 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 42 ) x + 122 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+42\right){x}+122i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 4 2 ) x + 1 2 2 i
31752.1-e4
31752.1-e
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 10 ⋅ 3 12 ⋅ 7 2 2^{10} \cdot 3^{12} \cdot 7^{2} 2 1 0 ⋅ 3 1 2 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1.137828769 1.137828769 1 . 1 3 7 8 2 8 7 6 9
0.669382619 0.669382619 0 . 6 6 9 3 8 2 6 1 9
3.046571210
1443468546 7 \frac{1443468546}{7} 7 1 4 4 3 4 6 8 5 4 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i + 672 -i + 672 − i + 6 7 2 , 7052 i ] 7052 i\bigr] 7 0 5 2 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 672 ) x + 7052 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+672\right){x}+7052i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 6 7 2 ) x + 7 0 5 2 i
31752.1-f1
31752.1-f
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 18 ⋅ 7 8 2^{8} \cdot 3^{18} \cdot 7^{8} 2 8 ⋅ 3 1 8 ⋅ 7 8
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 6 2^{6} 2 6
1 1 1
0.463617288 0.463617288 0 . 4 6 3 6 1 7 2 8 8
1.854469154
− 2725888 64827 -\frac{2725888}{64827} − 6 4 8 2 7 2 7 2 5 8 8 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 66 -66 − 6 6 , − 1339 ] -1339\bigr] − 1 3 3 9 ]
y 2 = x 3 − 66 x − 1339 {y}^2={x}^{3}-66{x}-1339 y 2 = x 3 − 6 6 x − 1 3 3 9
31752.1-f2
31752.1-f
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 36 ⋅ 7 2 2^{8} \cdot 3^{36} \cdot 7^{2} 2 8 ⋅ 3 3 6 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
4 4 4
2 3 2^{3} 2 3
1 1 1
0.231808644 0.231808644 0 . 2 3 1 8 0 8 6 4 4
1.854469154
6522128932 3720087 \frac{6522128932}{3720087} 3 7 2 0 0 8 7 6 5 2 2 1 2 8 9 3 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 882 882 8 8 2 , 1652 i ] 1652 i\bigr] 1 6 5 2 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 882 x + 1652 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+882{x}+1652i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 8 8 2 x + 1 6 5 2 i
31752.1-f3
31752.1-f
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 24 ⋅ 7 4 2^{4} \cdot 3^{24} \cdot 7^{4} 2 4 ⋅ 3 2 4 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 4 2^{4} 2 4
1 1 1
0.463617288 0.463617288 0 . 4 6 3 6 1 7 2 8 8
1.854469154
6940769488 35721 \frac{6940769488}{35721} 3 5 7 2 1 6 9 4 0 7 6 9 4 8 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 567 567 5 6 7 , − 4900 i ] -4900 i\bigr] − 4 9 0 0 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 567 x − 4900 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+567{x}-4900i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 5 6 7 x − 4 9 0 0 i
31752.1-f4
31752.1-f
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 18 ⋅ 7 2 2^{8} \cdot 3^{18} \cdot 7^{2} 2 8 ⋅ 3 1 8 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
16 16 1 6
2 3 2^{3} 2 3
1 1 1
0.231808644 0.231808644 0 . 2 3 1 8 0 8 6 4 4
1.854469154
7080974546692 189 \frac{7080974546692}{189} 1 8 9 7 0 8 0 9 7 4 5 4 6 6 9 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 9072 9072 9 0 7 2 , − 328090 i ] -328090 i\bigr] − 3 2 8 0 9 0 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 9072 x − 328090 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+9072{x}-328090i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 9 0 7 2 x − 3 2 8 0 9 0 i
31752.1-g1
31752.1-g
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 10 ⋅ 3 16 ⋅ 7 6 2^{10} \cdot 3^{16} \cdot 7^{6} 2 1 0 ⋅ 3 1 6 ⋅ 7 6
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.582969403 0.582969403 0 . 5 8 2 9 6 9 4 0 3
1.165938807
− 63821054 3087 a − 1625104 343 -\frac{63821054}{3087} a - \frac{1625104}{343} − 3 0 8 7 6 3 8 2 1 0 5 4 a − 3 4 3 1 6 2 5 1 0 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , 17 i − 240 17 i - 240 1 7 i − 2 4 0 , 98 i − 1438 ] 98 i - 1438\bigr] 9 8 i − 1 4 3 8 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 17 i − 240 ) x + 98 i − 1438 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(17i-240\right){x}+98i-1438 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 1 7 i − 2 4 0 ) x + 9 8 i − 1 4 3 8
31752.1-g2
31752.1-g
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 11 ⋅ 3 14 ⋅ 7 12 2^{11} \cdot 3^{14} \cdot 7^{12} 2 1 1 ⋅ 3 1 4 ⋅ 7 1 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.291484701 0.291484701 0 . 2 9 1 4 8 4 7 0 1
1.165938807
− 36618425 352947 a − 212113 1029 -\frac{36618425}{352947} a - \frac{212113}{1029} − 3 5 2 9 4 7 3 6 6 1 8 4 2 5 a − 1 0 2 9 2 1 2 1 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , 287 i + 30 287 i + 30 2 8 7 i + 3 0 , − 2224 i − 5164 ] -2224 i - 5164\bigr] − 2 2 2 4 i − 5 1 6 4 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 287 i + 30 ) x − 2224 i − 5164 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(287i+30\right){x}-2224i-5164 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 2 8 7 i + 3 0 ) x − 2 2 2 4 i − 5 1 6 4
31752.1-h1
31752.1-h
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 18 ⋅ 7 4 2^{4} \cdot 3^{18} \cdot 7^{4} 2 4 ⋅ 3 1 8 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1.013053864 1.013053864 1 . 0 1 3 0 5 3 8 6 4
1.113190980 1.113190980 1 . 1 1 3 1 9 0 9 8 0
4.510889699
11664 49 \frac{11664}{49} 4 9 1 1 6 6 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 21 -21 − 2 1 , − 98 i ] -98 i\bigr] − 9 8 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 − 21 x − 98 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}-21{x}-98i y 2 + ( i + 1 ) x y = x 3 + i x 2 − 2 1 x − 9 8 i
31752.1-h2
31752.1-h
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 18 ⋅ 7 2 2^{8} \cdot 3^{18} \cdot 7^{2} 2 8 ⋅ 3 1 8 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
2.026107729 2.026107729 2 . 0 2 6 1 0 7 7 2 9
1.113190980 1.113190980 1 . 1 1 3 1 9 0 9 8 0
4.510889699
55296 7 \frac{55296}{7} 7 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 54 -54 − 5 4 , − 135 ] -135\bigr] − 1 3 5 ]
y 2 = x 3 − 54 x − 135 {y}^2={x}^{3}-54{x}-135 y 2 = x 3 − 5 4 x − 1 3 5
31752.1-i1
31752.1-i
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 18 ⋅ 7 4 2^{8} \cdot 3^{18} \cdot 7^{4} 2 8 ⋅ 3 1 8 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
0.858243449 0.858243449 0 . 8 5 8 2 4 3 4 4 9
3.432973797
− 55296 49 -\frac{55296}{49} − 4 9 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 54 -54 − 5 4 , 243 ] 243\bigr] 2 4 3 ]
y 2 = x 3 − 54 x + 243 {y}^2={x}^{3}-54{x}+243 y 2 = x 3 − 5 4 x + 2 4 3
31752.1-i2
31752.1-i
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 4 ⋅ 3 18 ⋅ 7 2 2^{4} \cdot 3^{18} \cdot 7^{2} 2 4 ⋅ 3 1 8 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
4 4 4
2 2 2^{2} 2 2
1 1 1
0.858243449 0.858243449 0 . 8 5 8 2 4 3 4 4 9
3.432973797
21882096 7 \frac{21882096}{7} 7 2 1 8 8 2 0 9 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − i + 249 -i + 249 − i + 2 4 9 , 1643 i ] 1643 i\bigr] 1 6 4 3 i ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 249 ) x + 1643 i {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+249\right){x}+1643i y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − i + 2 4 9 ) x + 1 6 4 3 i
31752.1-j1
31752.1-j
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 8 ⋅ 3 12 ⋅ 7 2 2^{8} \cdot 3^{12} \cdot 7^{2} 2 8 ⋅ 3 1 2 ⋅ 7 2
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
2.131913095 2.131913095 2 . 1 3 1 9 1 3 0 9 5
4.263826191
− 4 7 -\frac{4}{7} − 7 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 0 0 0 , 14 i ] 14 i\bigr] 1 4 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 14 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+14i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 1 4 i
31752.1-j2
31752.1-j
2 2 2
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
31752.1
2 3 ⋅ 3 4 ⋅ 7 2 2^{3} \cdot 3^{4} \cdot 7^{2} 2 3 ⋅ 3 4 ⋅ 7 2
2 10 ⋅ 3 12 ⋅ 7 4 2^{10} \cdot 3^{12} \cdot 7^{4} 2 1 0 ⋅ 3 1 2 ⋅ 7 4
2.38568 2.38568 2 . 3 8 5 6 8
( a + 1 ) , ( 3 ) , ( 7 ) (a+1), (3), (7) ( a + 1 ) , ( 3 ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
1.065956547 1.065956547 1 . 0 6 5 9 5 6 5 4 7
4.263826191
3543122 49 \frac{3543122}{49} 4 9 3 5 4 3 1 2 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 90 90 9 0 , 374 i ] 374 i\bigr] 3 7 4 i ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + 90 x + 374 i {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+90{x}+374i y 2 + ( i + 1 ) x y = x 3 + i x 2 + 9 0 x + 3 7 4 i