Learn more

Refine search


Results (19 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
43264.2-a1 43264.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.039180365$ $1.325034618$ 4.153227228 \( -\frac{335147200}{371293} a + \frac{809589576}{371293} \) \( \bigl[0\) , \( -i + 1\) , \( 0\) , \( 26 i + 11\) , \( -i + 51\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(26i+11\right){x}-i+51$
43264.2-a2 43264.2-a \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.039180365$ $1.325034618$ 4.153227228 \( \frac{335147200}{371293} a + \frac{809589576}{371293} \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -26 i + 11\) , \( i + 51\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-26i+11\right){x}+i+51$
43264.2-b1 43264.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.547256300$ $2.369310139$ 2.593239803 \( \frac{432}{169} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 10 i\bigr] \) ${y}^2={x}^{3}-{x}+10i$
43264.2-b2 43264.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.094512601$ $4.738620278$ 2.593239803 \( \frac{442368}{13} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 3 i\bigr] \) ${y}^2={x}^{3}+4{x}+3i$
43264.2-b3 43264.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.094512601$ $1.184655069$ 2.593239803 \( -\frac{793539828}{28561} a + \frac{1773275112}{28561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -60 i - 41\) , \( 234 i + 28\bigr] \) ${y}^2={x}^{3}+\left(-60i-41\right){x}+234i+28$
43264.2-b4 43264.2-b \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.094512601$ $1.184655069$ 2.593239803 \( \frac{793539828}{28561} a + \frac{1773275112}{28561} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 60 i - 41\) , \( 234 i - 28\bigr] \) ${y}^2={x}^{3}+\left(60i-41\right){x}+234i-28$
43264.2-c1 43264.2-c \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.092906538$ $3.237581375$ 4.812679665 \( -\frac{8}{13} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 0\) , \( 4 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+4i$
43264.2-d1 43264.2-d \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.271587909$ 2.271587909 \( -\frac{258416}{2197} a + \frac{5960256}{2197} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 8 i + 6\) , \( -4 i + 10\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(8i+6\right){x}-4i+10$
43264.2-e1 43264.2-e \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.236753544$ $2.194739176$ 4.156898240 \( -\frac{235298}{13} \) \( \bigl[0\) , \( i\) , \( 0\) , \( 16\) , \( 32 i\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+16{x}+32i$
43264.2-f1 43264.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.089317794$ $0.140032125$ 4.902885390 \( -\frac{1064019559329}{125497034} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 3403\) , \( -83834 i\bigr] \) ${y}^2={x}^{3}+3403{x}-83834i$
43264.2-f2 43264.2-f \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.625224564$ $0.980224879$ 4.902885390 \( -\frac{2146689}{1664} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 43\) , \( -166 i\bigr] \) ${y}^2={x}^{3}+43{x}-166i$
43264.2-g1 43264.2-g \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.548399943$ 3.096799887 \( \frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -22 i - 9\) , \( 55 i - 23\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-22i-9\right){x}+55i-23$
43264.2-h1 43264.2-h \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.196471962$ 3.196471962 \( 2992 a - \frac{138816}{13} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 4 i - 6\) , \( -4 i + 6\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(4i-6\right){x}-4i+6$
43264.2-i1 43264.2-i \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.271587909$ 2.271587909 \( \frac{258416}{2197} a + \frac{5960256}{2197} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -8 i + 6\) , \( 4 i + 10\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-8i+6\right){x}+4i+10$
43264.2-j1 43264.2-j \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.548399943$ 3.096799887 \( -\frac{10173824}{2197} a - \frac{428574}{2197} \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( 22 i - 9\) , \( -55 i - 23\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(22i-9\right){x}-55i-23$
43264.2-k1 43264.2-k \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.196471962$ 3.196471962 \( -2992 a - \frac{138816}{13} \) \( \bigl[0\) , \( i\) , \( 0\) , \( -4 i - 6\) , \( 4 i + 6\bigr] \) ${y}^2={x}^{3}+i{x}^{2}+\left(-4i-6\right){x}+4i+6$
43264.2-l1 43264.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.977948821$ $0.224233532$ 5.342047875 \( -\frac{10730978619193}{6656} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 7352\) , \( -245104 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+7352{x}-245104i$
43264.2-l2 43264.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.992649607$ $0.672700598$ 5.342047875 \( -\frac{10218313}{17576} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 72\) , \( -496 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+72{x}-496i$
43264.2-l3 43264.2-l \(\Q(\sqrt{-1}) \) \( 2^{8} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.330883202$ $2.018101794$ 5.342047875 \( \frac{12167}{26} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -8\) , \( 16 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}-8{x}+16i$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.