Learn more

Refine search


Results (19 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
43264.2-a1 43264.2-a Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 22 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0391803650.039180365 1.3250346181.325034618 4.153227228 335147200371293a+809589576371293 -\frac{335147200}{371293} a + \frac{809589576}{371293} [0 \bigl[0 , i+1 -i + 1 , 0 0 , 26i+11 26 i + 11 , i+51] -i + 51\bigr] y2=x3+(i+1)x2+(26i+11)xi+51{y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(26i+11\right){x}-i+51
43264.2-a2 43264.2-a Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 22 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0391803650.039180365 1.3250346181.325034618 4.153227228 335147200371293a+809589576371293 \frac{335147200}{371293} a + \frac{809589576}{371293} [0 \bigl[0 , i+1 i + 1 , 0 0 , 26i+11 -26 i + 11 , i+51] i + 51\bigr] y2=x3+(i+1)x2+(26i+11)x+i+51{y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-26i+11\right){x}+i+51
43264.2-b1 43264.2-b Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.5472563000.547256300 2.3693101392.369310139 2.593239803 432169 \frac{432}{169} [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 10i] 10 i\bigr] y2=x3x+10i{y}^2={x}^{3}-{x}+10i
43264.2-b2 43264.2-b Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.0945126011.094512601 4.7386202784.738620278 2.593239803 44236813 \frac{442368}{13} [0 \bigl[0 , 0 0 , 0 0 , 4 4 , 3i] 3 i\bigr] y2=x3+4x+3i{y}^2={x}^{3}+4{x}+3i
43264.2-b3 43264.2-b Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 1.0945126011.094512601 1.1846550691.184655069 2.593239803 79353982828561a+177327511228561 -\frac{793539828}{28561} a + \frac{1773275112}{28561} [0 \bigl[0 , 0 0 , 0 0 , 60i41 -60 i - 41 , 234i+28] 234 i + 28\bigr] y2=x3+(60i41)x+234i+28{y}^2={x}^{3}+\left(-60i-41\right){x}+234i+28
43264.2-b4 43264.2-b Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 1.0945126011.094512601 1.1846550691.184655069 2.593239803 79353982828561a+177327511228561 \frac{793539828}{28561} a + \frac{1773275112}{28561} [0 \bigl[0 , 0 0 , 0 0 , 60i41 60 i - 41 , 234i28] 234 i - 28\bigr] y2=x3+(60i41)x+234i28{y}^2={x}^{3}+\left(60i-41\right){x}+234i-28
43264.2-c1 43264.2-c Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 22 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0929065380.092906538 3.2375813753.237581375 4.812679665 813 -\frac{8}{13} [0 \bigl[0 , i i , 0 0 , 0 0 , 4i] 4 i\bigr] y2=x3+ix2+4i{y}^2={x}^{3}+i{x}^{2}+4i
43264.2-d1 43264.2-d Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 2.2715879092.271587909 2.271587909 2584162197a+59602562197 -\frac{258416}{2197} a + \frac{5960256}{2197} [0 \bigl[0 , i -i , 0 0 , 8i+6 8 i + 6 , 4i+10] -4 i + 10\bigr] y2=x3ix2+(8i+6)x4i+10{y}^2={x}^{3}-i{x}^{2}+\left(8i+6\right){x}-4i+10
43264.2-e1 43264.2-e Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2367535440.236753544 2.1947391762.194739176 4.156898240 23529813 -\frac{235298}{13} [0 \bigl[0 , i i , 0 0 , 16 16 , 32i] 32 i\bigr] y2=x3+ix2+16x+32i{y}^2={x}^{3}+i{x}^{2}+16{x}+32i
43264.2-f1 43264.2-f Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0893177940.089317794 0.1400321250.140032125 4.902885390 1064019559329125497034 -\frac{1064019559329}{125497034} [0 \bigl[0 , 0 0 , 0 0 , 3403 3403 , 83834i] -83834 i\bigr] y2=x3+3403x83834i{y}^2={x}^{3}+3403{x}-83834i
43264.2-f2 43264.2-f Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.6252245640.625224564 0.9802248790.980224879 4.902885390 21466891664 -\frac{2146689}{1664} [0 \bigl[0 , 0 0 , 0 0 , 43 43 , 166i] -166 i\bigr] y2=x3+43x166i{y}^2={x}^{3}+43{x}-166i
43264.2-g1 43264.2-g Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.5483999431.548399943 3.096799887 101738242197a4285742197 \frac{10173824}{2197} a - \frac{428574}{2197} [0 \bigl[0 , i1 -i - 1 , 0 0 , 22i9 -22 i - 9 , 55i23] 55 i - 23\bigr] y2=x3+(i1)x2+(22i9)x+55i23{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-22i-9\right){x}+55i-23
43264.2-h1 43264.2-h Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 3.1964719623.196471962 3.196471962 2992a13881613 2992 a - \frac{138816}{13} [0 \bigl[0 , i -i , 0 0 , 4i6 4 i - 6 , 4i+6] -4 i + 6\bigr] y2=x3ix2+(4i6)x4i+6{y}^2={x}^{3}-i{x}^{2}+\left(4i-6\right){x}-4i+6
43264.2-i1 43264.2-i Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 2.2715879092.271587909 2.271587909 2584162197a+59602562197 \frac{258416}{2197} a + \frac{5960256}{2197} [0 \bigl[0 , i i , 0 0 , 8i+6 -8 i + 6 , 4i+10] 4 i + 10\bigr] y2=x3+ix2+(8i+6)x+4i+10{y}^2={x}^{3}+i{x}^{2}+\left(-8i+6\right){x}+4i+10
43264.2-j1 43264.2-j Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.5483999431.548399943 3.096799887 101738242197a4285742197 -\frac{10173824}{2197} a - \frac{428574}{2197} [0 \bigl[0 , i1 i - 1 , 0 0 , 22i9 22 i - 9 , 55i23] -55 i - 23\bigr] y2=x3+(i1)x2+(22i9)x55i23{y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(22i-9\right){x}-55i-23
43264.2-k1 43264.2-k Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 3.1964719623.196471962 3.196471962 2992a13881613 -2992 a - \frac{138816}{13} [0 \bigl[0 , i i , 0 0 , 4i6 -4 i - 6 , 4i+6] 4 i + 6\bigr] y2=x3+ix2+(4i6)x+4i+6{y}^2={x}^{3}+i{x}^{2}+\left(-4i-6\right){x}+4i+6
43264.2-l1 43264.2-l Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 2.9779488212.977948821 0.2242335320.224233532 5.342047875 107309786191936656 -\frac{10730978619193}{6656} [0 \bigl[0 , i -i , 0 0 , 7352 7352 , 245104i] -245104 i\bigr] y2=x3ix2+7352x245104i{y}^2={x}^{3}-i{x}^{2}+7352{x}-245104i
43264.2-l2 43264.2-l Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.9926496070.992649607 0.6727005980.672700598 5.342047875 1021831317576 -\frac{10218313}{17576} [0 \bigl[0 , i -i , 0 0 , 72 72 , 496i] -496 i\bigr] y2=x3ix2+72x496i{y}^2={x}^{3}-i{x}^{2}+72{x}-496i
43264.2-l3 43264.2-l Q(1)\Q(\sqrt{-1}) 28132 2^{8} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3308832020.330883202 2.0181017942.018101794 5.342047875 1216726 \frac{12167}{26} [0 \bigl[0 , i -i , 0 0 , 8 -8 , 16i] 16 i\bigr] y2=x3ix28x+16i{y}^2={x}^{3}-i{x}^{2}-8{x}+16i
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.