43264.2-a1
43264.2-a
2 2 2
5 5 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 18 ⋅ 1 3 6 2^{18} \cdot 13^{6} 2 1 8 ⋅ 1 3 6
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B
1 1 1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
0.039180365 0.039180365 0 . 0 3 9 1 8 0 3 6 5
1.325034618 1.325034618 1 . 3 2 5 0 3 4 6 1 8
4.153227228
− 335147200 371293 a + 809589576 371293 -\frac{335147200}{371293} a + \frac{809589576}{371293} − 3 7 1 2 9 3 3 3 5 1 4 7 2 0 0 a + 3 7 1 2 9 3 8 0 9 5 8 9 5 7 6
[ 0 \bigl[0 [ 0 , − i + 1 -i + 1 − i + 1 , 0 0 0 , 26 i + 11 26 i + 11 2 6 i + 1 1 , − i + 51 ] -i + 51\bigr] − i + 5 1 ]
y 2 = x 3 + ( − i + 1 ) x 2 + ( 26 i + 11 ) x − i + 51 {y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(26i+11\right){x}-i+51 y 2 = x 3 + ( − i + 1 ) x 2 + ( 2 6 i + 1 1 ) x − i + 5 1
43264.2-a2
43264.2-a
2 2 2
5 5 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 18 ⋅ 1 3 6 2^{18} \cdot 13^{6} 2 1 8 ⋅ 1 3 6
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
5 5 5
5B
1 1 1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
0.039180365 0.039180365 0 . 0 3 9 1 8 0 3 6 5
1.325034618 1.325034618 1 . 3 2 5 0 3 4 6 1 8
4.153227228
335147200 371293 a + 809589576 371293 \frac{335147200}{371293} a + \frac{809589576}{371293} 3 7 1 2 9 3 3 3 5 1 4 7 2 0 0 a + 3 7 1 2 9 3 8 0 9 5 8 9 5 7 6
[ 0 \bigl[0 [ 0 , i + 1 i + 1 i + 1 , 0 0 0 , − 26 i + 11 -26 i + 11 − 2 6 i + 1 1 , i + 51 ] i + 51\bigr] i + 5 1 ]
y 2 = x 3 + ( i + 1 ) x 2 + ( − 26 i + 11 ) x + i + 51 {y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-26i+11\right){x}+i+51 y 2 = x 3 + ( i + 1 ) x 2 + ( − 2 6 i + 1 1 ) x + i + 5 1
43264.2-b1
43264.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 16 ⋅ 1 3 4 2^{16} \cdot 13^{4} 2 1 6 ⋅ 1 3 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
0.547256300 0.547256300 0 . 5 4 7 2 5 6 3 0 0
2.369310139 2.369310139 2 . 3 6 9 3 1 0 1 3 9
2.593239803
432 169 \frac{432}{169} 1 6 9 4 3 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 10 i ] 10 i\bigr] 1 0 i ]
y 2 = x 3 − x + 10 i {y}^2={x}^{3}-{x}+10i y 2 = x 3 − x + 1 0 i
43264.2-b2
43264.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1.094512601 1.094512601 1 . 0 9 4 5 1 2 6 0 1
4.738620278 4.738620278 4 . 7 3 8 6 2 0 2 7 8
2.593239803
442368 13 \frac{442368}{13} 1 3 4 4 2 3 6 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 4 4 4 , 3 i ] 3 i\bigr] 3 i ]
y 2 = x 3 + 4 x + 3 i {y}^2={x}^{3}+4{x}+3i y 2 = x 3 + 4 x + 3 i
43264.2-b3
43264.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 20 ⋅ 1 3 5 2^{20} \cdot 13^{5} 2 2 0 ⋅ 1 3 5
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1.094512601 1.094512601 1 . 0 9 4 5 1 2 6 0 1
1.184655069 1.184655069 1 . 1 8 4 6 5 5 0 6 9
2.593239803
− 793539828 28561 a + 1773275112 28561 -\frac{793539828}{28561} a + \frac{1773275112}{28561} − 2 8 5 6 1 7 9 3 5 3 9 8 2 8 a + 2 8 5 6 1 1 7 7 3 2 7 5 1 1 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 60 i − 41 -60 i - 41 − 6 0 i − 4 1 , 234 i + 28 ] 234 i + 28\bigr] 2 3 4 i + 2 8 ]
y 2 = x 3 + ( − 60 i − 41 ) x + 234 i + 28 {y}^2={x}^{3}+\left(-60i-41\right){x}+234i+28 y 2 = x 3 + ( − 6 0 i − 4 1 ) x + 2 3 4 i + 2 8
43264.2-b4
43264.2-b
4 4 4
4 4 4
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 20 ⋅ 1 3 5 2^{20} \cdot 13^{5} 2 2 0 ⋅ 1 3 5
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1.094512601 1.094512601 1 . 0 9 4 5 1 2 6 0 1
1.184655069 1.184655069 1 . 1 8 4 6 5 5 0 6 9
2.593239803
793539828 28561 a + 1773275112 28561 \frac{793539828}{28561} a + \frac{1773275112}{28561} 2 8 5 6 1 7 9 3 5 3 9 8 2 8 a + 2 8 5 6 1 1 7 7 3 2 7 5 1 1 2
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 60 i − 41 60 i - 41 6 0 i − 4 1 , 234 i − 28 ] 234 i - 28\bigr] 2 3 4 i − 2 8 ]
y 2 = x 3 + ( 60 i − 41 ) x + 234 i − 28 {y}^2={x}^{3}+\left(60i-41\right){x}+234i-28 y 2 = x 3 + ( 6 0 i − 4 1 ) x + 2 3 4 i − 2 8
43264.2-c1
43264.2-c
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 18 ⋅ 1 3 2 2^{18} \cdot 13^{2} 2 1 8 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
2 2 2
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2^{2} 2 2
0.092906538 0.092906538 0 . 0 9 2 9 0 6 5 3 8
3.237581375 3.237581375 3 . 2 3 7 5 8 1 3 7 5
4.812679665
− 8 13 -\frac{8}{13} − 1 3 8
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 0 0 0 , 4 i ] 4 i\bigr] 4 i ]
y 2 = x 3 + i x 2 + 4 i {y}^2={x}^{3}+i{x}^{2}+4i y 2 = x 3 + i x 2 + 4 i
43264.2-d1
43264.2-d
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 16 ⋅ 1 3 4 2^{16} \cdot 13^{4} 2 1 6 ⋅ 1 3 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
2.271587909 2.271587909 2 . 2 7 1 5 8 7 9 0 9
2.271587909
− 258416 2197 a + 5960256 2197 -\frac{258416}{2197} a + \frac{5960256}{2197} − 2 1 9 7 2 5 8 4 1 6 a + 2 1 9 7 5 9 6 0 2 5 6
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 8 i + 6 8 i + 6 8 i + 6 , − 4 i + 10 ] -4 i + 10\bigr] − 4 i + 1 0 ]
y 2 = x 3 − i x 2 + ( 8 i + 6 ) x − 4 i + 10 {y}^2={x}^{3}-i{x}^{2}+\left(8i+6\right){x}-4i+10 y 2 = x 3 − i x 2 + ( 8 i + 6 ) x − 4 i + 1 0
43264.2-e1
43264.2-e
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 22 ⋅ 1 3 2 2^{22} \cdot 13^{2} 2 2 2 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
1 1 1
2 2 2^{2} 2 2
0.236753544 0.236753544 0 . 2 3 6 7 5 3 5 4 4
2.194739176 2.194739176 2 . 1 9 4 7 3 9 1 7 6
4.156898240
− 235298 13 -\frac{235298}{13} − 1 3 2 3 5 2 9 8
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , 16 16 1 6 , 32 i ] 32 i\bigr] 3 2 i ]
y 2 = x 3 + i x 2 + 16 x + 32 i {y}^2={x}^{3}+i{x}^{2}+16{x}+32i y 2 = x 3 + i x 2 + 1 6 x + 3 2 i
43264.2-f1
43264.2-f
2 2 2
7 7 7
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 26 ⋅ 1 3 14 2^{26} \cdot 13^{14} 2 2 6 ⋅ 1 3 1 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
7 7 7
7B.6.3
1 1 1
2 2 ⋅ 7 2 2^{2} \cdot 7^{2} 2 2 ⋅ 7 2
0.089317794 0.089317794 0 . 0 8 9 3 1 7 7 9 4
0.140032125 0.140032125 0 . 1 4 0 0 3 2 1 2 5
4.902885390
− 1064019559329 125497034 -\frac{1064019559329}{125497034} − 1 2 5 4 9 7 0 3 4 1 0 6 4 0 1 9 5 5 9 3 2 9
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 3403 3403 3 4 0 3 , − 83834 i ] -83834 i\bigr] − 8 3 8 3 4 i ]
y 2 = x 3 + 3403 x − 83834 i {y}^2={x}^{3}+3403{x}-83834i y 2 = x 3 + 3 4 0 3 x − 8 3 8 3 4 i
43264.2-f2
43264.2-f
2 2 2
7 7 7
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 38 ⋅ 1 3 2 2^{38} \cdot 13^{2} 2 3 8 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
7 7 7
7B.6.1
1 1 1
2 2 2^{2} 2 2
0.625224564 0.625224564 0 . 6 2 5 2 2 4 5 6 4
0.980224879 0.980224879 0 . 9 8 0 2 2 4 8 7 9
4.902885390
− 2146689 1664 -\frac{2146689}{1664} − 1 6 6 4 2 1 4 6 6 8 9
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 43 43 4 3 , − 166 i ] -166 i\bigr] − 1 6 6 i ]
y 2 = x 3 + 43 x − 166 i {y}^2={x}^{3}+43{x}-166i y 2 = x 3 + 4 3 x − 1 6 6 i
43264.2-g1
43264.2-g
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 22 ⋅ 1 3 4 2^{22} \cdot 13^{4} 2 2 2 ⋅ 1 3 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
2 2 2
1 1 1
1.548399943 1.548399943 1 . 5 4 8 3 9 9 9 4 3
3.096799887
10173824 2197 a − 428574 2197 \frac{10173824}{2197} a - \frac{428574}{2197} 2 1 9 7 1 0 1 7 3 8 2 4 a − 2 1 9 7 4 2 8 5 7 4
[ 0 \bigl[0 [ 0 , − i − 1 -i - 1 − i − 1 , 0 0 0 , − 22 i − 9 -22 i - 9 − 2 2 i − 9 , 55 i − 23 ] 55 i - 23\bigr] 5 5 i − 2 3 ]
y 2 = x 3 + ( − i − 1 ) x 2 + ( − 22 i − 9 ) x + 55 i − 23 {y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-22i-9\right){x}+55i-23 y 2 = x 3 + ( − i − 1 ) x 2 + ( − 2 2 i − 9 ) x + 5 5 i − 2 3
43264.2-h1
43264.2-h
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 16 ⋅ 1 3 2 2^{16} \cdot 13^{2} 2 1 6 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
3.196471962 3.196471962 3 . 1 9 6 4 7 1 9 6 2
3.196471962
2992 a − 138816 13 2992 a - \frac{138816}{13} 2 9 9 2 a − 1 3 1 3 8 8 1 6
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 4 i − 6 4 i - 6 4 i − 6 , − 4 i + 6 ] -4 i + 6\bigr] − 4 i + 6 ]
y 2 = x 3 − i x 2 + ( 4 i − 6 ) x − 4 i + 6 {y}^2={x}^{3}-i{x}^{2}+\left(4i-6\right){x}-4i+6 y 2 = x 3 − i x 2 + ( 4 i − 6 ) x − 4 i + 6
43264.2-i1
43264.2-i
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 16 ⋅ 1 3 4 2^{16} \cdot 13^{4} 2 1 6 ⋅ 1 3 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
2.271587909 2.271587909 2 . 2 7 1 5 8 7 9 0 9
2.271587909
258416 2197 a + 5960256 2197 \frac{258416}{2197} a + \frac{5960256}{2197} 2 1 9 7 2 5 8 4 1 6 a + 2 1 9 7 5 9 6 0 2 5 6
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , − 8 i + 6 -8 i + 6 − 8 i + 6 , 4 i + 10 ] 4 i + 10\bigr] 4 i + 1 0 ]
y 2 = x 3 + i x 2 + ( − 8 i + 6 ) x + 4 i + 10 {y}^2={x}^{3}+i{x}^{2}+\left(-8i+6\right){x}+4i+10 y 2 = x 3 + i x 2 + ( − 8 i + 6 ) x + 4 i + 1 0
43264.2-j1
43264.2-j
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 22 ⋅ 1 3 4 2^{22} \cdot 13^{4} 2 2 2 ⋅ 1 3 4
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
2 2 2
1 1 1
1.548399943 1.548399943 1 . 5 4 8 3 9 9 9 4 3
3.096799887
− 10173824 2197 a − 428574 2197 -\frac{10173824}{2197} a - \frac{428574}{2197} − 2 1 9 7 1 0 1 7 3 8 2 4 a − 2 1 9 7 4 2 8 5 7 4
[ 0 \bigl[0 [ 0 , i − 1 i - 1 i − 1 , 0 0 0 , 22 i − 9 22 i - 9 2 2 i − 9 , − 55 i − 23 ] -55 i - 23\bigr] − 5 5 i − 2 3 ]
y 2 = x 3 + ( i − 1 ) x 2 + ( 22 i − 9 ) x − 55 i − 23 {y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(22i-9\right){x}-55i-23 y 2 = x 3 + ( i − 1 ) x 2 + ( 2 2 i − 9 ) x − 5 5 i − 2 3
43264.2-k1
43264.2-k
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 16 ⋅ 1 3 2 2^{16} \cdot 13^{2} 2 1 6 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
1 1 1
1 1 1
3.196471962 3.196471962 3 . 1 9 6 4 7 1 9 6 2
3.196471962
− 2992 a − 138816 13 -2992 a - \frac{138816}{13} − 2 9 9 2 a − 1 3 1 3 8 8 1 6
[ 0 \bigl[0 [ 0 , i i i , 0 0 0 , − 4 i − 6 -4 i - 6 − 4 i − 6 , 4 i + 6 ] 4 i + 6\bigr] 4 i + 6 ]
y 2 = x 3 + i x 2 + ( − 4 i − 6 ) x + 4 i + 6 {y}^2={x}^{3}+i{x}^{2}+\left(-4i-6\right){x}+4i+6 y 2 = x 3 + i x 2 + ( − 4 i − 6 ) x + 4 i + 6
43264.2-l1
43264.2-l
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 42 ⋅ 1 3 2 2^{42} \cdot 13^{2} 2 4 2 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B
1 1 1
2 2 2^{2} 2 2
2.977948821 2.977948821 2 . 9 7 7 9 4 8 8 2 1
0.224233532 0.224233532 0 . 2 2 4 2 3 3 5 3 2
5.342047875
− 10730978619193 6656 -\frac{10730978619193}{6656} − 6 6 5 6 1 0 7 3 0 9 7 8 6 1 9 1 9 3
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 7352 7352 7 3 5 2 , − 245104 i ] -245104 i\bigr] − 2 4 5 1 0 4 i ]
y 2 = x 3 − i x 2 + 7352 x − 245104 i {y}^2={x}^{3}-i{x}^{2}+7352{x}-245104i y 2 = x 3 − i x 2 + 7 3 5 2 x − 2 4 5 1 0 4 i
43264.2-l2
43264.2-l
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 30 ⋅ 1 3 6 2^{30} \cdot 13^{6} 2 3 0 ⋅ 1 3 6
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3Cs
1 1 1
2 2 2^{2} 2 2
0.992649607 0.992649607 0 . 9 9 2 6 4 9 6 0 7
0.672700598 0.672700598 0 . 6 7 2 7 0 0 5 9 8
5.342047875
− 10218313 17576 -\frac{10218313}{17576} − 1 7 5 7 6 1 0 2 1 8 3 1 3
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , 72 72 7 2 , − 496 i ] -496 i\bigr] − 4 9 6 i ]
y 2 = x 3 − i x 2 + 72 x − 496 i {y}^2={x}^{3}-i{x}^{2}+72{x}-496i y 2 = x 3 − i x 2 + 7 2 x − 4 9 6 i
43264.2-l3
43264.2-l
3 3 3
9 9 9
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
43264.2
2 8 ⋅ 1 3 2 2^{8} \cdot 13^{2} 2 8 ⋅ 1 3 2
2 26 ⋅ 1 3 2 2^{26} \cdot 13^{2} 2 2 6 ⋅ 1 3 2
2.57751 2.57751 2 . 5 7 7 5 1
( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 ) (a+1), (-3a-2), (2a+3) ( a + 1 ) , ( − 3 a − 2 ) , ( 2 a + 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 3 3
3B
1 1 1
2 2 2^{2} 2 2
0.330883202 0.330883202 0 . 3 3 0 8 8 3 2 0 2
2.018101794 2.018101794 2 . 0 1 8 1 0 1 7 9 4
5.342047875
12167 26 \frac{12167}{26} 2 6 1 2 1 6 7
[ 0 \bigl[0 [ 0 , − i -i − i , 0 0 0 , − 8 -8 − 8 , 16 i ] 16 i\bigr] 1 6 i ]
y 2 = x 3 − i x 2 − 8 x + 16 i {y}^2={x}^{3}-i{x}^{2}-8{x}+16i y 2 = x 3 − i x 2 − 8 x + 1 6 i