Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-52650.4-a
Conductor 52650.4
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 52650.4-a over \(\Q(\sqrt{-1}) \)

Isogeny class 52650.4-a contains 8 curves linked by isogenies of degrees dividing 12.

Curve label Weierstrass Coefficients
52650.4-a1 \( \bigl[i\) , \( 1\) , \( i + 1\) , \( 1453 i - 1984\) , \( -37787 i + 26892\bigr] \)
52650.4-a2 \( \bigl[i\) , \( 1\) , \( i + 1\) , \( 13 i - 4\) , \( -95 i + 108\bigr] \)
52650.4-a3 \( \bigl[i\) , \( 1\) , \( i + 1\) , \( -4262 i + 1301\) , \( -222278 i + 102195\bigr] \)
52650.4-a4 \( \bigl[1\) , \( -1\) , \( i + 1\) , \( -977 i + 85\) , \( -4604 i + 7398\bigr] \)
52650.4-a5 \( \bigl[1\) , \( -1\) , \( i + 1\) , \( 1543 i - 1985\) , \( 34330 i - 28026\bigr] \)
52650.4-a6 \( \bigl[1\) , \( -1\) , \( i + 1\) , \( 8788 i - 5270\) , \( -373721 i - 26433\bigr] \)
52650.4-a7 \( \bigl[1\) , \( -1\) , \( i + 1\) , \( -347 i - 5\) , \( 1822 i - 1620\bigr] \)
52650.4-a8 \( \bigl[i\) , \( 1\) , \( i + 1\) , \( -5477 i - 94\) , \( -114521 i + 107406\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 3 & 4 & 12 & 2 & 4 & 6 & 12 \\ 3 & 1 & 12 & 4 & 6 & 12 & 2 & 4 \\ 4 & 12 & 1 & 12 & 2 & 4 & 6 & 3 \\ 12 & 4 & 12 & 1 & 6 & 3 & 2 & 4 \\ 2 & 6 & 2 & 6 & 1 & 2 & 3 & 6 \\ 4 & 12 & 4 & 3 & 2 & 1 & 6 & 12 \\ 6 & 2 & 6 & 2 & 3 & 6 & 1 & 2 \\ 12 & 4 & 3 & 4 & 6 & 12 & 2 & 1 \end{array}\right)\)

Isogeny graph