Learn more

Refine search


Results (1-50 of 70040 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9.1-CMa1 9.1-CMa Q(2)\Q(\sqrt{-2}) 32 3^{2} 0 Z/6Z\Z/6\Z 8-8 U(1)\mathrm{U}(1) 11 7.3265673727.326567372 0.287814748 8000 8000 [a \bigl[a , a+1 -a + 1 , 1 1 , 1 -1 , 0] 0\bigr] y2+axy+y=x3+(a+1)x2x{y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-{x}
9.3-CMa1 9.3-CMa Q(2)\Q(\sqrt{-2}) 32 3^{2} 0 Z/6Z\Z/6\Z 8-8 U(1)\mathrm{U}(1) 11 7.3265673727.326567372 0.287814748 8000 8000 [a \bigl[a , a+1 a + 1 , 1 1 , a1 -a - 1 , 0] 0\bigr] y2+axy+y=x3+(a+1)x2+(a1)x{y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a-1\right){x}
32.1-a1 32.1-a Q(2)\Q(\sqrt{-2}) 25 2^{5} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4-4 N(U(1))N(\mathrm{U}(1)) 11 6.8751858186.875185818 0.607686314 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x{y}^2={x}^{3}-{x}
32.1-a2 32.1-a Q(2)\Q(\sqrt{-2}) 25 2^{5} 0 Z/4Z\Z/4\Z 4-4 N(U(1))N(\mathrm{U}(1)) 11 6.8751858186.875185818 0.607686314 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 1 , 0] 0\bigr] y2=x3+x{y}^2={x}^{3}+{x}
32.1-a3 32.1-a Q(2)\Q(\sqrt{-2}) 25 2^{5} 0 Z/4Z\Z/4\Z 16-16 N(U(1))N(\mathrm{U}(1)) 11 6.8751858186.875185818 0.607686314 287496 287496 [a \bigl[a , 1 -1 , 0 0 , 2 -2 , 3] 3\bigr] y2+axy=x3x22x+3{y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}+3
32.1-a4 32.1-a Q(2)\Q(\sqrt{-2}) 25 2^{5} 0 Z/4Z\Z/4\Z 16-16 N(U(1))N(\mathrm{U}(1)) 11 6.8751858186.875185818 0.607686314 287496 287496 [a \bigl[a , 1 -1 , a a , 1 -1 , 0] 0\bigr] y2+axy+ay=x3x2x{y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x}
51.1-a1 51.1-a Q(2)\Q(\sqrt{-2}) 317 3 \cdot 17 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0320296060.032029606 7.1224113227.122411322 0.322621752 14379522601a951682601 -\frac{1437952}{2601} a - \frac{95168}{2601} [a \bigl[a , a1 a - 1 , 1 1 , a -a , 0] 0\bigr] y2+axy+y=x3+(a1)x2ax{y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}-a{x}
51.1-a2 51.1-a Q(2)\Q(\sqrt{-2}) 317 3 \cdot 17 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0640592120.064059212 7.1224113227.122411322 0.322621752 42682881377a+20275841377 \frac{4268288}{1377} a + \frac{2027584}{1377} [a \bigl[a , a1 a - 1 , a+1 a + 1 , 2a+2 -2 a + 2 , 0] 0\bigr] y2+axy+(a+1)y=x3+(a1)x2+(2a+2)x{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+2\right){x}
51.4-a1 51.4-a Q(2)\Q(\sqrt{-2}) 317 3 \cdot 17 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0320296060.032029606 7.1224113227.122411322 0.322621752 14379522601a951682601 \frac{1437952}{2601} a - \frac{95168}{2601} [a \bigl[a , a1 -a - 1 , 1 1 , 0 0 , 0] 0\bigr] y2+axy+y=x3+(a1)x2{y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}
51.4-a2 51.4-a Q(2)\Q(\sqrt{-2}) 317 3 \cdot 17 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.0640592120.064059212 7.1224113227.122411322 0.322621752 42682881377a+20275841377 -\frac{4268288}{1377} a + \frac{2027584}{1377} [a \bigl[a , a1 -a - 1 , a+1 a + 1 , a+2 a + 2 , a] -a\bigr] y2+axy+(a+1)y=x3+(a1)x2+(a+2)xa{y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+2\right){x}-a
54.1-a1 54.1-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 8.2065621248.206562124 0.644768414 69354a92512 \frac{6935}{4} a - \frac{9251}{2} [1 \bigl[1 , a+1 -a + 1 , 0 0 , a1 -a - 1 , 1] -1\bigr] y2+xy=x3+(a+1)x2+(a1)x1{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a-1\right){x}-1
54.1-a2 54.1-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 8.2065621248.206562124 0.644768414 2692a+1619 -\frac{269}{2} a + 1619 [a+1 \bigl[a + 1 , 0 0 , 1 1 , a1 -a - 1 , 0] 0\bigr] y2+(a+1)xy+y=x3+(a1)x{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}
54.1-a3 54.1-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9118402360.911840236 0.644768414 24112360716384a+597109338192 \frac{241123607}{16384} a + \frac{59710933}{8192} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 51a+69 -51 a + 69 , 62a+339] 62 a + 339\bigr] y2+xy=x3+(a+1)x2+(51a+69)x+62a+339{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-51a+69\right){x}+62a+339
54.1-a4 54.1-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.7355207082.735520708 0.644768414 262836532a+18334716 -\frac{2628365}{32} a + \frac{183347}{16} [1 \bigl[1 , a+1 -a + 1 , 0 0 , 11a+4 -11 a + 4 , 26] -26\bigr] y2+xy=x3+(a+1)x2+(11a+4)x26{y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+4\right){x}-26
54.4-a1 54.4-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 8.2065621248.206562124 0.644768414 69354a92512 -\frac{6935}{4} a - \frac{9251}{2} [1 \bigl[1 , a+1 a + 1 , 0 0 , a1 a - 1 , 1] -1\bigr] y2+xy=x3+(a+1)x2+(a1)x1{y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-1\right){x}-1
54.4-a2 54.4-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 8.2065621248.206562124 0.644768414 2692a+1619 \frac{269}{2} a + 1619 [a+1 \bigl[a + 1 , a -a , 1 1 , 1 -1 , 0] 0\bigr] y2+(a+1)xy+y=x3ax2x{y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-{x}
54.4-a3 54.4-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.9118402360.911840236 0.644768414 24112360716384a+597109338192 -\frac{241123607}{16384} a + \frac{59710933}{8192} [1 \bigl[1 , a+1 a + 1 , 0 0 , 51a+69 51 a + 69 , 62a+339] -62 a + 339\bigr] y2+xy=x3+(a+1)x2+(51a+69)x62a+339{y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(51a+69\right){x}-62a+339
54.4-a4 54.4-a Q(2)\Q(\sqrt{-2}) 233 2 \cdot 3^{3} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 2.7355207082.735520708 0.644768414 262836532a+18334716 \frac{2628365}{32} a + \frac{183347}{16} [1 \bigl[1 , a+1 a + 1 , 0 0 , 11a+4 11 a + 4 , 26] -26\bigr] y2+xy=x3+(a+1)x2+(11a+4)x26{y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(11a+4\right){x}-26
72.2-a1 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 0.642644632 2076466561 \frac{207646}{6561} [a \bigl[a , 1 1 , a a , 5 5 , 23] 23\bigr] y2+axy+ay=x3+x2+5x+23{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+5{x}+23
72.2-a2 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 0.642644632 20483 \frac{2048}{3} [0 \bigl[0 , 1 -1 , 0 0 , 1 1 , 0] 0\bigr] y2=x3x2+x{y}^2={x}^{3}-{x}^{2}+{x}
72.2-a3 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 7.2706940357.270694035 0.642644632 351529 \frac{35152}{9} [a \bigl[a , 1 1 , a a , 0 0 , 0] 0\bigr] y2+axy+ay=x3+x2{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}
72.2-a4 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 0.642644632 155606881 \frac{1556068}{81} [a \bigl[a , 1 1 , a a , 5 -5 , 5] 5\bigr] y2+axy+ay=x3+x25x+5{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}+5
72.2-a5 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9088367540.908836754 0.642644632 232704274655343046721a+208126380260043046721 -\frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} [a \bigl[a , 1 1 , a a , 70a+85 70 a + 85 , 98a+559] -98 a + 559\bigr] y2+axy+ay=x3+x2+(70a+85)x98a+559{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(70a+85\right){x}-98a+559
72.2-a6 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9088367540.908836754 0.642644632 232704274655343046721a+208126380260043046721 \frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} [a \bigl[a , 1 1 , a a , 70a+85 -70 a + 85 , 98a+559] 98 a + 559\bigr] y2+axy+ay=x3+x2+(70a+85)x+98a+559{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-70a+85\right){x}+98a+559
72.2-a7 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.6353470173.635347017 0.642644632 287562283 \frac{28756228}{3} [a \bigl[a , 1 1 , a a , 15 -15 , 27] -27\bigr] y2+axy+ay=x3+x215x27{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-15{x}-27
72.2-a8 72.2-a Q(2)\Q(\sqrt{-2}) 2332 2^{3} \cdot 3^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.8176735081.817673508 0.642644632 30656171549 \frac{3065617154}{9} [a \bigl[a , 1 1 , a a , 95 -95 , 347] 347\bigr] y2+axy+ay=x3+x295x+347{y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-95{x}+347
98.1-a1 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8754171350.875417135 0.309506696 5483477316251835008 -\frac{548347731625}{1835008} [1 \bigl[1 , 0 0 , 1 1 , 171 -171 , 874] -874\bigr] y2+xy+y=x3171x874{y}^2+{x}{y}+{y}={x}^{3}-171{x}-874
98.1-a2 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 7.8787542167.878754216 0.309506696 1562528 -\frac{15625}{28} [1 \bigl[1 , 0 0 , 1 1 , 1 -1 , 0] 0\bigr] y2+xy+y=x3x{y}^2+{x}{y}+{y}={x}^{3}-{x}
98.1-a3 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 2.6262514052.626251405 0.309506696 993837521952 \frac{9938375}{21952} [1 \bigl[1 , 0 0 , 1 1 , 4 4 , 6] -6\bigr] y2+xy+y=x3+4x6{y}^2+{x}{y}+{y}={x}^{3}+4{x}-6
98.1-a4 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 1.3131257021.313125702 0.309506696 4956477625941192 \frac{4956477625}{941192} [1 \bigl[1 , 0 0 , 1 1 , 36 -36 , 70] -70\bigr] y2+xy+y=x336x70{y}^2+{x}{y}+{y}={x}^{3}-36{x}-70
98.1-a5 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 3.9393771083.939377108 0.309506696 12878762598 \frac{128787625}{98} [1 \bigl[1 , 0 0 , 1 1 , 11 -11 , 12] 12\bigr] y2+xy+y=x311x+12{y}^2+{x}{y}+{y}={x}^{3}-11{x}+12
98.1-a6 98.1-a Q(2)\Q(\sqrt{-2}) 272 2 \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4377085670.437708567 0.309506696 225143905569962525088 \frac{2251439055699625}{25088} [1 \bigl[1 , 0 0 , 1 1 , 2731 -2731 , 55146] -55146\bigr] y2+xy+y=x32731x55146{y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146
99.3-a1 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.6973184121.697318412 0.600092679 310304350562272171a54192358214972171 \frac{3103043505622}{72171} a - \frac{541923582149}{72171} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 12a90 -12 a - 90 , 71a+302] 71 a + 302\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(12a90)x+71a+302{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-12a-90\right){x}+71a+302
99.3-a2 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8486592060.848659206 0.600092679 13933889720425476134173973914201a24792974712365923334173973914201 \frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 3a+95 3 a + 95 , 251a30] 251 a - 30\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(3a+95)x+251a30{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+95\right){x}+251a-30
99.3-a3 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.3946368253.394636825 0.600092679 36461250888209a39316272788209 -\frac{364612508}{88209} a - \frac{393162727}{88209} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 2a5 -2 a - 5 , a+4] a + 4\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(2a5)x+a+4{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-5\right){x}+a+4
99.3-a4 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.7892736516.789273651 0.600092679 689288297a385271297 \frac{689288}{297} a - \frac{385271}{297} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 2a -2 a , a] -a\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x22axa{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}-2a{x}-a
99.3-a5 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6973184121.697318412 0.600092679 10263058631027780827681a71507337697937780827681 \frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 8a 8 a , 19a+22] 19 a + 22\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+8ax+19a+22{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+8a{x}+19a+22
99.3-a6 99.3-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8486592060.848659206 0.600092679 68547528581042953156267624249a+367387425943146769156267624249 -\frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , 173a15 173 a - 15 , 859a+1006] 859 a + 1006\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(173a15)x+859a+1006{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(173a-15\right){x}+859a+1006
99.4-a1 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.6973184121.697318412 0.600092679 310304350562272171a54192358214972171 -\frac{3103043505622}{72171} a - \frac{541923582149}{72171} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 10a90 10 a - 90 , 72a+302] -72 a + 302\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(10a90)x72a+302{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(10a-90\right){x}-72a+302
99.4-a2 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8486592060.848659206 0.600092679 13933889720425476134173973914201a24792974712365923334173973914201 -\frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 5a+95 -5 a + 95 , 252a30] -252 a - 30\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(5a+95)x252a30{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-5a+95\right){x}-252a-30
99.4-a3 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 3.3946368253.394636825 0.600092679 36461250888209a39316272788209 \frac{364612508}{88209} a - \frac{393162727}{88209} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 5 -5 , 2a+4] -2 a + 4\bigr] y2+(a+1)xy+(a+1)y=x3+x25x2a+4{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-5{x}-2a+4
99.4-a4 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 6.7892736516.789273651 0.600092679 689288297a385271297 -\frac{689288}{297} a - \frac{385271}{297} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 0 0 , 0] 0\bigr] y2+(a+1)xy+(a+1)y=x3+x2{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}
99.4-a5 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.6973184121.697318412 0.600092679 10263058631027780827681a71507337697937780827681 -\frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 10a -10 a , 20a+22] -20 a + 22\bigr] y2+(a+1)xy+(a+1)y=x3+x210ax20a+22{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-10a{x}-20a+22
99.4-a6 99.4-a Q(2)\Q(\sqrt{-2}) 3211 3^{2} \cdot 11 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8486592060.848659206 0.600092679 68547528581042953156267624249a+367387425943146769156267624249 \frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , 175a15 -175 a - 15 , 860a+1006] -860 a + 1006\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(175a15)x860a+1006{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-175a-15\right){x}-860a+1006
100.1-a1 100.1-a Q(2)\Q(\sqrt{-2}) 2252 2^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1378123040.137812304 2.1410318852.141031885 0.625917922 2072046415625 -\frac{20720464}{15625} [a \bigl[a , 0 0 , a a , 8 -8 , 18] 18\bigr] y2+axy+ay=x38x+18{y}^2+a{x}{y}+a{y}={x}^{3}-8{x}+18
100.1-a2 100.1-a Q(2)\Q(\sqrt{-2}) 2252 2^{2} \cdot 5^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 0.4134369140.413436914 6.4230956566.423095656 0.625917922 2129625 \frac{21296}{25} [a \bigl[a , 0 0 , a a , 2 2 , 0] 0\bigr] y2+axy+ay=x3+2x{y}^2+a{x}{y}+a{y}={x}^{3}+2{x}
100.1-a3 100.1-a Q(2)\Q(\sqrt{-2}) 2252 2^{2} \cdot 5^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 0.8268738280.826873828 6.4230956566.423095656 0.625917922 163845 \frac{16384}{5} [0 \bigl[0 , 1 1 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3+x2x{y}^2={x}^{3}+{x}^{2}-{x}
100.1-a4 100.1-a Q(2)\Q(\sqrt{-2}) 2252 2^{2} \cdot 5^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2756246090.275624609 2.1410318852.141031885 0.625917922 488095744125 \frac{488095744}{125} [0 \bigl[0 , 1 1 , 0 0 , 41 -41 , 116] -116\bigr] y2=x3+x241x116{y}^2={x}^{3}+{x}^{2}-41{x}-116
108.2-a1 108.2-a Q(2)\Q(\sqrt{-2}) 2233 2^{2} \cdot 3^{3} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.4883169361.488316936 1.052398998 1820275681a25308698881 -\frac{18202756}{81} a - \frac{253086988}{81} [a \bigl[a , a+1 -a + 1 , 0 0 , 59a+4 -59 a + 4 , 122a261] 122 a - 261\bigr] y2+axy=x3+(a+1)x2+(59a+4)x+122a261{y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a+4\right){x}+122a-261
108.2-a2 108.2-a Q(2)\Q(\sqrt{-2}) 2233 2^{2} \cdot 3^{3} 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 1.4883169361.488316936 1.052398998 1820275681a25308698881 \frac{18202756}{81} a - \frac{253086988}{81} [a \bigl[a , a+1 -a + 1 , a a , 48a+49 -48 a + 49 , 7a+265] 7 a + 265\bigr] y2+axy+ay=x3+(a+1)x2+(48a+49)x+7a+265{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-48a+49\right){x}+7a+265
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.