Learn more

Refine search


Results (1-50 of 70040 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9.1-CMa1 9.1-CMa \(\Q(\sqrt{-2}) \) \( 3^{2} \) 0 $\Z/6\Z$ $-8$ $\mathrm{U}(1)$ $1$ $7.326567372$ 0.287814748 \( 8000 \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-{x}$
9.3-CMa1 9.3-CMa \(\Q(\sqrt{-2}) \) \( 3^{2} \) 0 $\Z/6\Z$ $-8$ $\mathrm{U}(1)$ $1$ $7.326567372$ 0.287814748 \( 8000 \) \( \bigl[a\) , \( a + 1\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a-1\right){x}$
32.1-a1 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}$
32.1-a2 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}$
32.1-a3 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 287496 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -2\) , \( 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}+3$
32.1-a4 32.1-a \(\Q(\sqrt{-2}) \) \( 2^{5} \) 0 $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $6.875185818$ 0.607686314 \( 287496 \) \( \bigl[a\) , \( -1\) , \( a\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x}$
51.1-a1 51.1-a \(\Q(\sqrt{-2}) \) \( 3 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.032029606$ $7.122411322$ 0.322621752 \( -\frac{1437952}{2601} a - \frac{95168}{2601} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( -a\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}-a{x}$
51.1-a2 51.1-a \(\Q(\sqrt{-2}) \) \( 3 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.064059212$ $7.122411322$ 0.322621752 \( \frac{4268288}{1377} a + \frac{2027584}{1377} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( -2 a + 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+2\right){x}$
51.4-a1 51.4-a \(\Q(\sqrt{-2}) \) \( 3 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.032029606$ $7.122411322$ 0.322621752 \( \frac{1437952}{2601} a - \frac{95168}{2601} \) \( \bigl[a\) , \( -a - 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}$
51.4-a2 51.4-a \(\Q(\sqrt{-2}) \) \( 3 \cdot 17 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.064059212$ $7.122411322$ 0.322621752 \( -\frac{4268288}{1377} a + \frac{2027584}{1377} \) \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( a + 2\) , \( -a\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+2\right){x}-a$
54.1-a1 54.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $8.206562124$ 0.644768414 \( \frac{6935}{4} a - \frac{9251}{2} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -a - 1\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a-1\right){x}-1$
54.1-a2 54.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $8.206562124$ 0.644768414 \( -\frac{269}{2} a + 1619 \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}$
54.1-a3 54.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.911840236$ 0.644768414 \( \frac{241123607}{16384} a + \frac{59710933}{8192} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -51 a + 69\) , \( 62 a + 339\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-51a+69\right){x}+62a+339$
54.1-a4 54.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.735520708$ 0.644768414 \( -\frac{2628365}{32} a + \frac{183347}{16} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -11 a + 4\) , \( -26\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+4\right){x}-26$
54.4-a1 54.4-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $8.206562124$ 0.644768414 \( -\frac{6935}{4} a - \frac{9251}{2} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( a - 1\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-1\right){x}-1$
54.4-a2 54.4-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $8.206562124$ 0.644768414 \( \frac{269}{2} a + 1619 \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-{x}$
54.4-a3 54.4-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.911840236$ 0.644768414 \( -\frac{241123607}{16384} a + \frac{59710933}{8192} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 51 a + 69\) , \( -62 a + 339\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(51a+69\right){x}-62a+339$
54.4-a4 54.4-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 3^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.735520708$ 0.644768414 \( \frac{2628365}{32} a + \frac{183347}{16} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 11 a + 4\) , \( -26\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(11a+4\right){x}-26$
72.2-a1 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 0.642644632 \( \frac{207646}{6561} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 5\) , \( 23\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+5{x}+23$
72.2-a2 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 0.642644632 \( \frac{2048}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+{x}$
72.2-a3 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $7.270694035$ 0.642644632 \( \frac{35152}{9} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}$
72.2-a4 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 0.642644632 \( \frac{1556068}{81} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( 5\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}+5$
72.2-a5 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908836754$ 0.642644632 \( -\frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 70 a + 85\) , \( -98 a + 559\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(70a+85\right){x}-98a+559$
72.2-a6 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.908836754$ 0.642644632 \( \frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -70 a + 85\) , \( 98 a + 559\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-70a+85\right){x}+98a+559$
72.2-a7 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.635347017$ 0.642644632 \( \frac{28756228}{3} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -15\) , \( -27\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-15{x}-27$
72.2-a8 72.2-a \(\Q(\sqrt{-2}) \) \( 2^{3} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.817673508$ 0.642644632 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -95\) , \( 347\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-95{x}+347$
98.1-a1 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.875417135$ 0.309506696 \( -\frac{548347731625}{1835008} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -171\) , \( -874\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-171{x}-874$
98.1-a2 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $7.878754216$ 0.309506696 \( -\frac{15625}{28} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}$
98.1-a3 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.626251405$ 0.309506696 \( \frac{9938375}{21952} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 4\) , \( -6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+4{x}-6$
98.1-a4 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.313125702$ 0.309506696 \( \frac{4956477625}{941192} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -36\) , \( -70\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-36{x}-70$
98.1-a5 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $3.939377108$ 0.309506696 \( \frac{128787625}{98} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -11\) , \( 12\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-11{x}+12$
98.1-a6 98.1-a \(\Q(\sqrt{-2}) \) \( 2 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.437708567$ 0.309506696 \( \frac{2251439055699625}{25088} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -2731\) , \( -55146\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146$
99.3-a1 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.697318412$ 0.600092679 \( \frac{3103043505622}{72171} a - \frac{541923582149}{72171} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -12 a - 90\) , \( 71 a + 302\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-12a-90\right){x}+71a+302$
99.3-a2 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.848659206$ 0.600092679 \( \frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 3 a + 95\) , \( 251 a - 30\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+95\right){x}+251a-30$
99.3-a3 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.394636825$ 0.600092679 \( -\frac{364612508}{88209} a - \frac{393162727}{88209} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2 a - 5\) , \( a + 4\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-5\right){x}+a+4$
99.3-a4 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.789273651$ 0.600092679 \( \frac{689288}{297} a - \frac{385271}{297} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -2 a\) , \( -a\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}-2a{x}-a$
99.3-a5 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.697318412$ 0.600092679 \( \frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 8 a\) , \( 19 a + 22\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+8a{x}+19a+22$
99.3-a6 99.3-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.848659206$ 0.600092679 \( -\frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 173 a - 15\) , \( 859 a + 1006\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(173a-15\right){x}+859a+1006$
99.4-a1 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.697318412$ 0.600092679 \( -\frac{3103043505622}{72171} a - \frac{541923582149}{72171} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 10 a - 90\) , \( -72 a + 302\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(10a-90\right){x}-72a+302$
99.4-a2 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.848659206$ 0.600092679 \( -\frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -5 a + 95\) , \( -252 a - 30\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-5a+95\right){x}-252a-30$
99.4-a3 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $3.394636825$ 0.600092679 \( \frac{364612508}{88209} a - \frac{393162727}{88209} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -5\) , \( -2 a + 4\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-5{x}-2a+4$
99.4-a4 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $6.789273651$ 0.600092679 \( -\frac{689288}{297} a - \frac{385271}{297} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}$
99.4-a5 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.697318412$ 0.600092679 \( -\frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -10 a\) , \( -20 a + 22\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-10a{x}-20a+22$
99.4-a6 99.4-a \(\Q(\sqrt{-2}) \) \( 3^{2} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.848659206$ 0.600092679 \( \frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -175 a - 15\) , \( -860 a + 1006\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-175a-15\right){x}-860a+1006$
100.1-a1 100.1-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.137812304$ $2.141031885$ 0.625917922 \( -\frac{20720464}{15625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -8\) , \( 18\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-8{x}+18$
100.1-a2 100.1-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.413436914$ $6.423095656$ 0.625917922 \( \frac{21296}{25} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 2\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+2{x}$
100.1-a3 100.1-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/6\Z$ $\mathrm{SU}(2)$ $0.826873828$ $6.423095656$ 0.625917922 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.1-a4 100.1-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.275624609$ $2.141031885$ 0.625917922 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
108.2-a1 108.2-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.488316936$ 1.052398998 \( -\frac{18202756}{81} a - \frac{253086988}{81} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -59 a + 4\) , \( 122 a - 261\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a+4\right){x}+122a-261$
108.2-a2 108.2-a \(\Q(\sqrt{-2}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.488316936$ 1.052398998 \( \frac{18202756}{81} a - \frac{253086988}{81} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -48 a + 49\) , \( 7 a + 265\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-48a+49\right){x}+7a+265$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.