9.1-CMa1
9.1-CMa
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
9.1
3 2 3^{2} 3 2
3 6 3^{6} 3 6
0.43777 0.43777 0 . 4 3 7 7 7
( − a − 1 ) (-a-1) ( − a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
yes \textsf{yes} yes
− 8 -8 − 8
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
3 3 3
3Cs.1.1
1 1 1
2 2 2
1 1 1
7.326567372 7.326567372 7 . 3 2 6 5 6 7 3 7 2
0.287814748
8000 8000 8 0 0 0
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + a x y + y = x 3 + ( − a + 1 ) x 2 − x {y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-{x} y 2 + a x y + y = x 3 + ( − a + 1 ) x 2 − x
9.3-CMa1
9.3-CMa
1 1 1
1 1 1
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
9.3
3 2 3^{2} 3 2
3 6 3^{6} 3 6
0.43777 0.43777 0 . 4 3 7 7 7
( a − 1 ) (a-1) ( a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
yes \textsf{yes} yes
− 8 -8 − 8
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
3 3 3
3Cs.1.1
1 1 1
2 2 2
1 1 1
7.326567372 7.326567372 7 . 3 2 6 5 6 7 3 7 2
0.287814748
8000 8000 8 0 0 0
[ a \bigl[a [ a , a + 1 a + 1 a + 1 , 1 1 1 , − a − 1 -a - 1 − a − 1 , 0 ] 0\bigr] 0 ]
y 2 + a x y + y = x 3 + ( a + 1 ) x 2 + ( − a − 1 ) x {y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-a-1\right){x} y 2 + a x y + y = x 3 + ( a + 1 ) x 2 + ( − a − 1 ) x
32.1-a1
32.1-a
4 4 4
4 4 4
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32.1
2 5 2^{5} 2 5
2 12 2^{12} 2 1 2
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.607686314
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x {y}^2={x}^{3}-{x} y 2 = x 3 − x
32.1-a2
32.1-a
4 4 4
4 4 4
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32.1
2 5 2^{5} 2 5
2 12 2^{12} 2 1 2
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
2 2 2
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.607686314
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x {y}^2={x}^{3}+{x} y 2 = x 3 + x
32.1-a3
32.1-a
4 4 4
4 4 4
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32.1
2 5 2^{5} 2 5
2 6 2^{6} 2 6
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
2 2 2
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.607686314
287496 287496 2 8 7 4 9 6
[ a \bigl[a [ a , − 1 -1 − 1 , 0 0 0 , − 2 -2 − 2 , 3 ] 3\bigr] 3 ]
y 2 + a x y = x 3 − x 2 − 2 x + 3 {y}^2+a{x}{y}={x}^{3}-{x}^{2}-2{x}+3 y 2 + a x y = x 3 − x 2 − 2 x + 3
32.1-a4
32.1-a
4 4 4
4 4 4
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32.1
2 5 2^{5} 2 5
2 6 2^{6} 2 6
0.60113 0.60113 0 . 6 0 1 1 3
( a ) (a) ( a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 16 -16 − 1 6
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
1 1 1
2 2 2
1 1 1
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
0.607686314
287496 287496 2 8 7 4 9 6
[ a \bigl[a [ a , − 1 -1 − 1 , a a a , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 − x 2 − x {y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-{x} y 2 + a x y + a y = x 3 − x 2 − x
51.1-a1
51.1-a
2 2 2
2 2 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
51.1
3 ⋅ 17 3 \cdot 17 3 ⋅ 1 7
3 2 ⋅ 1 7 2 3^{2} \cdot 17^{2} 3 2 ⋅ 1 7 2
0.67542 0.67542 0 . 6 7 5 4 2
( − a − 1 ) , ( − 2 a + 3 ) (-a-1), (-2a+3) ( − a − 1 ) , ( − 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.032029606 0.032029606 0 . 0 3 2 0 2 9 6 0 6
7.122411322 7.122411322 7 . 1 2 2 4 1 1 3 2 2
0.322621752
− 1437952 2601 a − 95168 2601 -\frac{1437952}{2601} a - \frac{95168}{2601} − 2 6 0 1 1 4 3 7 9 5 2 a − 2 6 0 1 9 5 1 6 8
[ a \bigl[a [ a , a − 1 a - 1 a − 1 , 1 1 1 , − a -a − a , 0 ] 0\bigr] 0 ]
y 2 + a x y + y = x 3 + ( a − 1 ) x 2 − a x {y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}-a{x} y 2 + a x y + y = x 3 + ( a − 1 ) x 2 − a x
51.1-a2
51.1-a
2 2 2
2 2 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
51.1
3 ⋅ 17 3 \cdot 17 3 ⋅ 1 7
3 4 ⋅ 17 3^{4} \cdot 17 3 4 ⋅ 1 7
0.67542 0.67542 0 . 6 7 5 4 2
( − a − 1 ) , ( − 2 a + 3 ) (-a-1), (-2a+3) ( − a − 1 ) , ( − 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
0.064059212 0.064059212 0 . 0 6 4 0 5 9 2 1 2
7.122411322 7.122411322 7 . 1 2 2 4 1 1 3 2 2
0.322621752
4268288 1377 a + 2027584 1377 \frac{4268288}{1377} a + \frac{2027584}{1377} 1 3 7 7 4 2 6 8 2 8 8 a + 1 3 7 7 2 0 2 7 5 8 4
[ a \bigl[a [ a , a − 1 a - 1 a − 1 , a + 1 a + 1 a + 1 , − 2 a + 2 -2 a + 2 − 2 a + 2 , 0 ] 0\bigr] 0 ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a + 2 ) x {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+2\right){x} y 2 + a x y + ( a + 1 ) y = x 3 + ( a − 1 ) x 2 + ( − 2 a + 2 ) x
51.4-a1
51.4-a
2 2 2
2 2 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
51.4
3 ⋅ 17 3 \cdot 17 3 ⋅ 1 7
3 2 ⋅ 1 7 2 3^{2} \cdot 17^{2} 3 2 ⋅ 1 7 2
0.67542 0.67542 0 . 6 7 5 4 2
( a − 1 ) , ( 2 a + 3 ) (a-1), (2a+3) ( a − 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
0.032029606 0.032029606 0 . 0 3 2 0 2 9 6 0 6
7.122411322 7.122411322 7 . 1 2 2 4 1 1 3 2 2
0.322621752
1437952 2601 a − 95168 2601 \frac{1437952}{2601} a - \frac{95168}{2601} 2 6 0 1 1 4 3 7 9 5 2 a − 2 6 0 1 9 5 1 6 8
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , 1 1 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + a x y + y = x 3 + ( − a − 1 ) x 2 {y}^2+a{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2} y 2 + a x y + y = x 3 + ( − a − 1 ) x 2
51.4-a2
51.4-a
2 2 2
2 2 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
51.4
3 ⋅ 17 3 \cdot 17 3 ⋅ 1 7
3 4 ⋅ 17 3^{4} \cdot 17 3 4 ⋅ 1 7
0.67542 0.67542 0 . 6 7 5 4 2
( a − 1 ) , ( 2 a + 3 ) (a-1), (2a+3) ( a − 1 ) , ( 2 a + 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
0.064059212 0.064059212 0 . 0 6 4 0 5 9 2 1 2
7.122411322 7.122411322 7 . 1 2 2 4 1 1 3 2 2
0.322621752
− 4268288 1377 a + 2027584 1377 -\frac{4268288}{1377} a + \frac{2027584}{1377} − 1 3 7 7 4 2 6 8 2 8 8 a + 1 3 7 7 2 0 2 7 5 8 4
[ a \bigl[a [ a , − a − 1 -a - 1 − a − 1 , a + 1 a + 1 a + 1 , a + 2 a + 2 a + 2 , − a ] -a\bigr] − a ]
y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( a + 2 ) x − a {y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+2\right){x}-a y 2 + a x y + ( a + 1 ) y = x 3 + ( − a − 1 ) x 2 + ( a + 2 ) x − a
54.1-a1
54.1-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.1
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 3 ⋅ 3 3 2^{3} \cdot 3^{3} 2 3 ⋅ 3 3
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( − a − 1 ) (a), (-a-1) ( a ) , ( − a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3Cs.1.1
1 1 1
1 1 1
1 1 1
8.206562124 8.206562124 8 . 2 0 6 5 6 2 1 2 4
0.644768414
6935 4 a − 9251 2 \frac{6935}{4} a - \frac{9251}{2} 4 6 9 3 5 a − 2 9 2 5 1
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − a − 1 -a - 1 − a − 1 , − 1 ] -1\bigr] − 1 ]
y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − a − 1 ) x − 1 {y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a-1\right){x}-1 y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − a − 1 ) x − 1
54.1-a2
54.1-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.1
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 ⋅ 3 5 2 \cdot 3^{5} 2 ⋅ 3 5
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( − a − 1 ) (a), (-a-1) ( a ) , ( − a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
1 1 1
1 1 1
8.206562124 8.206562124 8 . 2 0 6 5 6 2 1 2 4
0.644768414
− 269 2 a + 1619 -\frac{269}{2} a + 1619 − 2 2 6 9 a + 1 6 1 9
[ a + 1 \bigl[a + 1 [ a + 1 , 0 0 0 , 1 1 1 , − a − 1 -a - 1 − a − 1 , 0 ] 0\bigr] 0 ]
y 2 + ( a + 1 ) x y + y = x 3 + ( − a − 1 ) x {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x} y 2 + ( a + 1 ) x y + y = x 3 + ( − a − 1 ) x
54.1-a3
54.1-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.1
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 27 ⋅ 3 11 2^{27} \cdot 3^{11} 2 2 7 ⋅ 3 1 1
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( − a − 1 ) (a), (-a-1) ( a ) , ( − a − 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
1 1 1
1 1 1
0.911840236 0.911840236 0 . 9 1 1 8 4 0 2 3 6
0.644768414
241123607 16384 a + 59710933 8192 \frac{241123607}{16384} a + \frac{59710933}{8192} 1 6 3 8 4 2 4 1 1 2 3 6 0 7 a + 8 1 9 2 5 9 7 1 0 9 3 3
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 51 a + 69 -51 a + 69 − 5 1 a + 6 9 , 62 a + 339 ] 62 a + 339\bigr] 6 2 a + 3 3 9 ]
y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − 51 a + 69 ) x + 62 a + 339 {y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-51a+69\right){x}+62a+339 y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − 5 1 a + 6 9 ) x + 6 2 a + 3 3 9
54.1-a4
54.1-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.1
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 9 ⋅ 3 9 2^{9} \cdot 3^{9} 2 9 ⋅ 3 9
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( − a − 1 ) (a), (-a-1) ( a ) , ( − a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3Cs.1.1
1 1 1
3 3 3
1 1 1
2.735520708 2.735520708 2 . 7 3 5 5 2 0 7 0 8
0.644768414
− 2628365 32 a + 183347 16 -\frac{2628365}{32} a + \frac{183347}{16} − 3 2 2 6 2 8 3 6 5 a + 1 6 1 8 3 3 4 7
[ 1 \bigl[1 [ 1 , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 11 a + 4 -11 a + 4 − 1 1 a + 4 , − 26 ] -26\bigr] − 2 6 ]
y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − 11 a + 4 ) x − 26 {y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a+4\right){x}-26 y 2 + x y = x 3 + ( − a + 1 ) x 2 + ( − 1 1 a + 4 ) x − 2 6
54.4-a1
54.4-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.4
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 3 ⋅ 3 3 2^{3} \cdot 3^{3} 2 3 ⋅ 3 3
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( a − 1 ) (a), (a-1) ( a ) , ( a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3Cs.1.1
1 1 1
1 1 1
1 1 1
8.206562124 8.206562124 8 . 2 0 6 5 6 2 1 2 4
0.644768414
− 6935 4 a − 9251 2 -\frac{6935}{4} a - \frac{9251}{2} − 4 6 9 3 5 a − 2 9 2 5 1
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , 0 0 0 , a − 1 a - 1 a − 1 , − 1 ] -1\bigr] − 1 ]
y 2 + x y = x 3 + ( a + 1 ) x 2 + ( a − 1 ) x − 1 {y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-1\right){x}-1 y 2 + x y = x 3 + ( a + 1 ) x 2 + ( a − 1 ) x − 1
54.4-a2
54.4-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.4
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 ⋅ 3 5 2 \cdot 3^{5} 2 ⋅ 3 5
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( a − 1 ) (a), (a-1) ( a ) , ( a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.1
1 1 1
1 1 1
1 1 1
8.206562124 8.206562124 8 . 2 0 6 5 6 2 1 2 4
0.644768414
269 2 a + 1619 \frac{269}{2} a + 1619 2 2 6 9 a + 1 6 1 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a -a − a , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + ( a + 1 ) x y + y = x 3 − a x 2 − x {y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-{x} y 2 + ( a + 1 ) x y + y = x 3 − a x 2 − x
54.4-a3
54.4-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.4
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 27 ⋅ 3 11 2^{27} \cdot 3^{11} 2 2 7 ⋅ 3 1 1
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( a − 1 ) (a), (a-1) ( a ) , ( a − 1 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3B.1.2
1 1 1
1 1 1
1 1 1
0.911840236 0.911840236 0 . 9 1 1 8 4 0 2 3 6
0.644768414
− 241123607 16384 a + 59710933 8192 -\frac{241123607}{16384} a + \frac{59710933}{8192} − 1 6 3 8 4 2 4 1 1 2 3 6 0 7 a + 8 1 9 2 5 9 7 1 0 9 3 3
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , 0 0 0 , 51 a + 69 51 a + 69 5 1 a + 6 9 , − 62 a + 339 ] -62 a + 339\bigr] − 6 2 a + 3 3 9 ]
y 2 + x y = x 3 + ( a + 1 ) x 2 + ( 51 a + 69 ) x − 62 a + 339 {y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(51a+69\right){x}-62a+339 y 2 + x y = x 3 + ( a + 1 ) x 2 + ( 5 1 a + 6 9 ) x − 6 2 a + 3 3 9
54.4-a4
54.4-a
4 4 4
27 27 2 7
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
54.4
2 ⋅ 3 3 2 \cdot 3^{3} 2 ⋅ 3 3
2 9 ⋅ 3 9 2^{9} \cdot 3^{9} 2 9 ⋅ 3 9
0.68514 0.68514 0 . 6 8 5 1 4
( a ) , ( a − 1 ) (a), (a-1) ( a ) , ( a − 1 )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 3 3
3Cs.1.1
1 1 1
3 3 3
1 1 1
2.735520708 2.735520708 2 . 7 3 5 5 2 0 7 0 8
0.644768414
2628365 32 a + 183347 16 \frac{2628365}{32} a + \frac{183347}{16} 3 2 2 6 2 8 3 6 5 a + 1 6 1 8 3 3 4 7
[ 1 \bigl[1 [ 1 , a + 1 a + 1 a + 1 , 0 0 0 , 11 a + 4 11 a + 4 1 1 a + 4 , − 26 ] -26\bigr] − 2 6 ]
y 2 + x y = x 3 + ( a + 1 ) x 2 + ( 11 a + 4 ) x − 26 {y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(11a+4\right){x}-26 y 2 + x y = x 3 + ( a + 1 ) x 2 + ( 1 1 a + 4 ) x − 2 6
72.2-a1
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 10 ⋅ 3 16 2^{10} \cdot 3^{16} 2 1 0 ⋅ 3 1 6
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
0.642644632
207646 6561 \frac{207646}{6561} 6 5 6 1 2 0 7 6 4 6
[ a \bigl[a [ a , 1 1 1 , a a a , 5 5 5 , 23 ] 23\bigr] 2 3 ]
y 2 + a x y + a y = x 3 + x 2 + 5 x + 23 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+5{x}+23 y 2 + a x y + a y = x 3 + x 2 + 5 x + 2 3
72.2-a2
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
0.642644632
2048 3 \frac{2048}{3} 3 2 0 4 8
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 1 1 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 + x {y}^2={x}^{3}-{x}^{2}+{x} y 2 = x 3 − x 2 + x
72.2-a3
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 4 ⋅ 3 4 2^{4} \cdot 3^{4} 2 4 ⋅ 3 4
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
7.270694035 7.270694035 7 . 2 7 0 6 9 4 0 3 5
0.642644632
35152 9 \frac{35152}{9} 9 3 5 1 5 2
[ a \bigl[a [ a , 1 1 1 , a a a , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 + x 2 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2} y 2 + a x y + a y = x 3 + x 2
72.2-a4
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 8 2^{8} \cdot 3^{8} 2 8 ⋅ 3 8
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
0.642644632
1556068 81 \frac{1556068}{81} 8 1 1 5 5 6 0 6 8
[ a \bigl[a [ a , 1 1 1 , a a a , − 5 -5 − 5 , 5 ] 5\bigr] 5 ]
y 2 + a x y + a y = x 3 + x 2 − 5 x + 5 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}+5 y 2 + a x y + a y = x 3 + x 2 − 5 x + 5
72.2-a5
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 11 ⋅ 3 20 2^{11} \cdot 3^{20} 2 1 1 ⋅ 3 2 0
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.908836754 0.908836754 0 . 9 0 8 8 3 6 7 5 4
0.642644632
− 2327042746553 43046721 a + 2081263802600 43046721 -\frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} − 4 3 0 4 6 7 2 1 2 3 2 7 0 4 2 7 4 6 5 5 3 a + 4 3 0 4 6 7 2 1 2 0 8 1 2 6 3 8 0 2 6 0 0
[ a \bigl[a [ a , 1 1 1 , a a a , 70 a + 85 70 a + 85 7 0 a + 8 5 , − 98 a + 559 ] -98 a + 559\bigr] − 9 8 a + 5 5 9 ]
y 2 + a x y + a y = x 3 + x 2 + ( 70 a + 85 ) x − 98 a + 559 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(70a+85\right){x}-98a+559 y 2 + a x y + a y = x 3 + x 2 + ( 7 0 a + 8 5 ) x − 9 8 a + 5 5 9
72.2-a6
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 11 ⋅ 3 20 2^{11} \cdot 3^{20} 2 1 1 ⋅ 3 2 0
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.908836754 0.908836754 0 . 9 0 8 8 3 6 7 5 4
0.642644632
2327042746553 43046721 a + 2081263802600 43046721 \frac{2327042746553}{43046721} a + \frac{2081263802600}{43046721} 4 3 0 4 6 7 2 1 2 3 2 7 0 4 2 7 4 6 5 5 3 a + 4 3 0 4 6 7 2 1 2 0 8 1 2 6 3 8 0 2 6 0 0
[ a \bigl[a [ a , 1 1 1 , a a a , − 70 a + 85 -70 a + 85 − 7 0 a + 8 5 , 98 a + 559 ] 98 a + 559\bigr] 9 8 a + 5 5 9 ]
y 2 + a x y + a y = x 3 + x 2 + ( − 70 a + 85 ) x + 98 a + 559 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-70a+85\right){x}+98a+559 y 2 + a x y + a y = x 3 + x 2 + ( − 7 0 a + 8 5 ) x + 9 8 a + 5 5 9
72.2-a7
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 8 ⋅ 3 2 2^{8} \cdot 3^{2} 2 8 ⋅ 3 2
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
3.635347017 3.635347017 3 . 6 3 5 3 4 7 0 1 7
0.642644632
28756228 3 \frac{28756228}{3} 3 2 8 7 5 6 2 2 8
[ a \bigl[a [ a , 1 1 1 , a a a , − 15 -15 − 1 5 , − 27 ] -27\bigr] − 2 7 ]
y 2 + a x y + a y = x 3 + x 2 − 15 x − 27 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-15{x}-27 y 2 + a x y + a y = x 3 + x 2 − 1 5 x − 2 7
72.2-a8
72.2-a
8 8 8
16 16 1 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
72.2
2 3 ⋅ 3 2 2^{3} \cdot 3^{2} 2 3 ⋅ 3 2
2 10 ⋅ 3 4 2^{10} \cdot 3^{4} 2 1 0 ⋅ 3 4
0.73624 0.73624 0 . 7 3 6 2 4
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.817673508 1.817673508 1 . 8 1 7 6 7 3 5 0 8
0.642644632
3065617154 9 \frac{3065617154}{9} 9 3 0 6 5 6 1 7 1 5 4
[ a \bigl[a [ a , 1 1 1 , a a a , − 95 -95 − 9 5 , 347 ] 347\bigr] 3 4 7 ]
y 2 + a x y + a y = x 3 + x 2 − 95 x + 347 {y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-95{x}+347 y 2 + a x y + a y = x 3 + x 2 − 9 5 x + 3 4 7
98.1-a1
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 36 ⋅ 7 2 2^{36} \cdot 7^{2} 2 3 6 ⋅ 7 2
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2
1 1 1
0.875417135 0.875417135 0 . 8 7 5 4 1 7 1 3 5
0.309506696
− 548347731625 1835008 -\frac{548347731625}{1835008} − 1 8 3 5 0 0 8 5 4 8 3 4 7 7 3 1 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 171 -171 − 1 7 1 , − 874 ] -874\bigr] − 8 7 4 ]
y 2 + x y + y = x 3 − 171 x − 874 {y}^2+{x}{y}+{y}={x}^{3}-171{x}-874 y 2 + x y + y = x 3 − 1 7 1 x − 8 7 4
98.1-a2
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 4 ⋅ 7 2 2^{4} \cdot 7^{2} 2 4 ⋅ 7 2
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
7.878754216 7.878754216 7 . 8 7 8 7 5 4 2 1 6
0.309506696
− 15625 28 -\frac{15625}{28} − 2 8 1 5 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 − x {y}^2+{x}{y}+{y}={x}^{3}-{x} y 2 + x y + y = x 3 − x
98.1-a3
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 12 ⋅ 7 6 2^{12} \cdot 7^{6} 2 1 2 ⋅ 7 6
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.626251405 2.626251405 2 . 6 2 6 2 5 1 4 0 5
0.309506696
9938375 21952 \frac{9938375}{21952} 2 1 9 5 2 9 9 3 8 3 7 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , 4 4 4 , − 6 ] -6\bigr] − 6 ]
y 2 + x y + y = x 3 + 4 x − 6 {y}^2+{x}{y}+{y}={x}^{3}+4{x}-6 y 2 + x y + y = x 3 + 4 x − 6
98.1-a4
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 6 ⋅ 7 12 2^{6} \cdot 7^{12} 2 6 ⋅ 7 1 2
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3Cs.1.1
1 1 1
2 2 ⋅ 3 2^{2} \cdot 3 2 2 ⋅ 3
1 1 1
1.313125702 1.313125702 1 . 3 1 3 1 2 5 7 0 2
0.309506696
4956477625 941192 \frac{4956477625}{941192} 9 4 1 1 9 2 4 9 5 6 4 7 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 36 -36 − 3 6 , − 70 ] -70\bigr] − 7 0 ]
y 2 + x y + y = x 3 − 36 x − 70 {y}^2+{x}{y}+{y}={x}^{3}-36{x}-70 y 2 + x y + y = x 3 − 3 6 x − 7 0
98.1-a5
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 2 ⋅ 7 4 2^{2} \cdot 7^{4} 2 2 ⋅ 7 4
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2^{2} 2 2
1 1 1
3.939377108 3.939377108 3 . 9 3 9 3 7 7 1 0 8
0.309506696
128787625 98 \frac{128787625}{98} 9 8 1 2 8 7 8 7 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 11 -11 − 1 1 , 12 ] 12\bigr] 1 2 ]
y 2 + x y + y = x 3 − 11 x + 12 {y}^2+{x}{y}+{y}={x}^{3}-11{x}+12 y 2 + x y + y = x 3 − 1 1 x + 1 2
98.1-a6
98.1-a
6 6 6
18 18 1 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
98.1
2 ⋅ 7 2 2 \cdot 7^{2} 2 ⋅ 7 2
2 18 ⋅ 7 4 2^{18} \cdot 7^{4} 2 1 8 ⋅ 7 4
0.79523 0.79523 0 . 7 9 5 2 3
( a ) , ( 7 ) (a), (7) ( a ) , ( 7 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.437708567 0.437708567 0 . 4 3 7 7 0 8 5 6 7
0.309506696
2251439055699625 25088 \frac{2251439055699625}{25088} 2 5 0 8 8 2 2 5 1 4 3 9 0 5 5 6 9 9 6 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 2731 -2731 − 2 7 3 1 , − 55146 ] -55146\bigr] − 5 5 1 4 6 ]
y 2 + x y + y = x 3 − 2731 x − 55146 {y}^2+{x}{y}+{y}={x}^{3}-2731{x}-55146 y 2 + x y + y = x 3 − 2 7 3 1 x − 5 5 1 4 6
99.3-a1
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 11 ⋅ 11 3^{11} \cdot 11 3 1 1 ⋅ 1 1
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.697318412 1.697318412 1 . 6 9 7 3 1 8 4 1 2
0.600092679
3103043505622 72171 a − 541923582149 72171 \frac{3103043505622}{72171} a - \frac{541923582149}{72171} 7 2 1 7 1 3 1 0 3 0 4 3 5 0 5 6 2 2 a − 7 2 1 7 1 5 4 1 9 2 3 5 8 2 1 4 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − 12 a − 90 -12 a - 90 − 1 2 a − 9 0 , 71 a + 302 ] 71 a + 302\bigr] 7 1 a + 3 0 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 12 a − 90 ) x + 71 a + 302 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-12a-90\right){x}+71a+302 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 1 2 a − 9 0 ) x + 7 1 a + 3 0 2
99.3-a2
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 25 ⋅ 1 1 2 3^{25} \cdot 11^{2} 3 2 5 ⋅ 1 1 2
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.848659206 0.848659206 0 . 8 4 8 6 5 9 2 0 6
0.600092679
139338897204254761 34173973914201 a − 247929747123659233 34173973914201 \frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} 3 4 1 7 3 9 7 3 9 1 4 2 0 1 1 3 9 3 3 8 8 9 7 2 0 4 2 5 4 7 6 1 a − 3 4 1 7 3 9 7 3 9 1 4 2 0 1 2 4 7 9 2 9 7 4 7 1 2 3 6 5 9 2 3 3
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , 3 a + 95 3 a + 95 3 a + 9 5 , 251 a − 30 ] 251 a - 30\bigr] 2 5 1 a − 3 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 3 a + 95 ) x + 251 a − 30 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(3a+95\right){x}+251a-30 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 3 a + 9 5 ) x + 2 5 1 a − 3 0
99.3-a3
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 10 ⋅ 1 1 2 3^{10} \cdot 11^{2} 3 1 0 ⋅ 1 1 2
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
3.394636825 3.394636825 3 . 3 9 4 6 3 6 8 2 5
0.600092679
− 364612508 88209 a − 393162727 88209 -\frac{364612508}{88209} a - \frac{393162727}{88209} − 8 8 2 0 9 3 6 4 6 1 2 5 0 8 a − 8 8 2 0 9 3 9 3 1 6 2 7 2 7
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − 2 a − 5 -2 a - 5 − 2 a − 5 , a + 4 ] a + 4\bigr] a + 4 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a − 5 ) x + a + 4 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a-5\right){x}+a+4 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − 2 a − 5 ) x + a + 4
99.3-a4
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 5 ⋅ 11 3^{5} \cdot 11 3 5 ⋅ 1 1
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
6.789273651 6.789273651 6 . 7 8 9 2 7 3 6 5 1
0.600092679
689288 297 a − 385271 297 \frac{689288}{297} a - \frac{385271}{297} 2 9 7 6 8 9 2 8 8 a − 2 9 7 3 8 5 2 7 1
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − 2 a -2 a − 2 a , − a ] -a\bigr] − a ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 − 2 a x − a {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}-2a{x}-a y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 − 2 a x − a
99.3-a5
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 14 ⋅ 1 1 4 3^{14} \cdot 11^{4} 3 1 4 ⋅ 1 1 4
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
1.697318412 1.697318412 1 . 6 9 7 3 1 8 4 1 2
0.600092679
1026305863102 7780827681 a − 7150733769793 7780827681 \frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} 7 7 8 0 8 2 7 6 8 1 1 0 2 6 3 0 5 8 6 3 1 0 2 a − 7 7 8 0 8 2 7 6 8 1 7 1 5 0 7 3 3 7 6 9 7 9 3
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , 8 a 8 a 8 a , 19 a + 22 ] 19 a + 22\bigr] 1 9 a + 2 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + 8 a x + 19 a + 22 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+8a{x}+19a+22 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + 8 a x + 1 9 a + 2 2
99.3-a6
99.3-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.3
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 7 ⋅ 1 1 8 3^{7} \cdot 11^{8} 3 7 ⋅ 1 1 8
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a + 3 ) (-a-1), (a-1), (a+3) ( − a − 1 ) , ( a − 1 ) , ( a + 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.848659206 0.848659206 0 . 8 4 8 6 5 9 2 0 6
0.600092679
− 68547528581042953 156267624249 a + 367387425943146769 156267624249 -\frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} − 1 5 6 2 6 7 6 2 4 2 4 9 6 8 5 4 7 5 2 8 5 8 1 0 4 2 9 5 3 a + 1 5 6 2 6 7 6 2 4 2 4 9 3 6 7 3 8 7 4 2 5 9 4 3 1 4 6 7 6 9
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , 173 a − 15 173 a - 15 1 7 3 a − 1 5 , 859 a + 1006 ] 859 a + 1006\bigr] 8 5 9 a + 1 0 0 6 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 173 a − 15 ) x + 859 a + 1006 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(173a-15\right){x}+859a+1006 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( 1 7 3 a − 1 5 ) x + 8 5 9 a + 1 0 0 6
99.4-a1
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 11 ⋅ 11 3^{11} \cdot 11 3 1 1 ⋅ 1 1
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
1.697318412 1.697318412 1 . 6 9 7 3 1 8 4 1 2
0.600092679
− 3103043505622 72171 a − 541923582149 72171 -\frac{3103043505622}{72171} a - \frac{541923582149}{72171} − 7 2 1 7 1 3 1 0 3 0 4 3 5 0 5 6 2 2 a − 7 2 1 7 1 5 4 1 9 2 3 5 8 2 1 4 9
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , 10 a − 90 10 a - 90 1 0 a − 9 0 , − 72 a + 302 ] -72 a + 302\bigr] − 7 2 a + 3 0 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( 10 a − 90 ) x − 72 a + 302 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(10a-90\right){x}-72a+302 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( 1 0 a − 9 0 ) x − 7 2 a + 3 0 2
99.4-a2
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 25 ⋅ 1 1 2 3^{25} \cdot 11^{2} 3 2 5 ⋅ 1 1 2
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.848659206 0.848659206 0 . 8 4 8 6 5 9 2 0 6
0.600092679
− 139338897204254761 34173973914201 a − 247929747123659233 34173973914201 -\frac{139338897204254761}{34173973914201} a - \frac{247929747123659233}{34173973914201} − 3 4 1 7 3 9 7 3 9 1 4 2 0 1 1 3 9 3 3 8 8 9 7 2 0 4 2 5 4 7 6 1 a − 3 4 1 7 3 9 7 3 9 1 4 2 0 1 2 4 7 9 2 9 7 4 7 1 2 3 6 5 9 2 3 3
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 5 a + 95 -5 a + 95 − 5 a + 9 5 , − 252 a − 30 ] -252 a - 30\bigr] − 2 5 2 a − 3 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − 5 a + 95 ) x − 252 a − 30 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-5a+95\right){x}-252a-30 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − 5 a + 9 5 ) x − 2 5 2 a − 3 0
99.4-a3
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 10 ⋅ 1 1 2 3^{10} \cdot 11^{2} 3 1 0 ⋅ 1 1 2
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
3.394636825 3.394636825 3 . 3 9 4 6 3 6 8 2 5
0.600092679
364612508 88209 a − 393162727 88209 \frac{364612508}{88209} a - \frac{393162727}{88209} 8 8 2 0 9 3 6 4 6 1 2 5 0 8 a − 8 8 2 0 9 3 9 3 1 6 2 7 2 7
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 5 -5 − 5 , − 2 a + 4 ] -2 a + 4\bigr] − 2 a + 4 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 − 5 x − 2 a + 4 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-5{x}-2a+4 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 − 5 x − 2 a + 4
99.4-a4
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 5 ⋅ 11 3^{5} \cdot 11 3 5 ⋅ 1 1
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2
1 1 1
6.789273651 6.789273651 6 . 7 8 9 2 7 3 6 5 1
0.600092679
− 689288 297 a − 385271 297 -\frac{689288}{297} a - \frac{385271}{297} − 2 9 7 6 8 9 2 8 8 a − 2 9 7 3 8 5 2 7 1
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2} y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2
99.4-a5
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 14 ⋅ 1 1 4 3^{14} \cdot 11^{4} 3 1 4 ⋅ 1 1 4
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
1.697318412 1.697318412 1 . 6 9 7 3 1 8 4 1 2
0.600092679
− 1026305863102 7780827681 a − 7150733769793 7780827681 -\frac{1026305863102}{7780827681} a - \frac{7150733769793}{7780827681} − 7 7 8 0 8 2 7 6 8 1 1 0 2 6 3 0 5 8 6 3 1 0 2 a − 7 7 8 0 8 2 7 6 8 1 7 1 5 0 7 3 3 7 6 9 7 9 3
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 10 a -10 a − 1 0 a , − 20 a + 22 ] -20 a + 22\bigr] − 2 0 a + 2 2 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 − 10 a x − 20 a + 22 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}-10a{x}-20a+22 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 − 1 0 a x − 2 0 a + 2 2
99.4-a6
99.4-a
6 6 6
8 8 8
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
99.4
3 2 ⋅ 11 3^{2} \cdot 11 3 2 ⋅ 1 1
3 7 ⋅ 1 1 8 3^{7} \cdot 11^{8} 3 7 ⋅ 1 1 8
0.79725 0.79725 0 . 7 9 7 2 5
( − a − 1 ) , ( a − 1 ) , ( a − 3 ) (-a-1), (a-1), (a-3) ( − a − 1 ) , ( a − 1 ) , ( a − 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
0.848659206 0.848659206 0 . 8 4 8 6 5 9 2 0 6
0.600092679
68547528581042953 156267624249 a + 367387425943146769 156267624249 \frac{68547528581042953}{156267624249} a + \frac{367387425943146769}{156267624249} 1 5 6 2 6 7 6 2 4 2 4 9 6 8 5 4 7 5 2 8 5 8 1 0 4 2 9 5 3 a + 1 5 6 2 6 7 6 2 4 2 4 9 3 6 7 3 8 7 4 2 5 9 4 3 1 4 6 7 6 9
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , − 175 a − 15 -175 a - 15 − 1 7 5 a − 1 5 , − 860 a + 1006 ] -860 a + 1006\bigr] − 8 6 0 a + 1 0 0 6 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − 175 a − 15 ) x − 860 a + 1006 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-175a-15\right){x}-860a+1006 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − 1 7 5 a − 1 5 ) x − 8 6 0 a + 1 0 0 6
100.1-a1
100.1-a
4 4 4
6 6 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.1
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 4 ⋅ 5 12 2^{4} \cdot 5^{12} 2 4 ⋅ 5 1 2
0.79925 0.79925 0 . 7 9 9 2 5
( a ) , ( 5 ) (a), (5) ( a ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.137812304 0.137812304 0 . 1 3 7 8 1 2 3 0 4
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.625917922
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ a \bigl[a [ a , 0 0 0 , a a a , − 8 -8 − 8 , 18 ] 18\bigr] 1 8 ]
y 2 + a x y + a y = x 3 − 8 x + 18 {y}^2+a{x}{y}+a{y}={x}^{3}-8{x}+18 y 2 + a x y + a y = x 3 − 8 x + 1 8
100.1-a2
100.1-a
4 4 4
6 6 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.1
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 4 ⋅ 5 4 2^{4} \cdot 5^{4} 2 4 ⋅ 5 4
0.79925 0.79925 0 . 7 9 9 2 5
( a ) , ( 5 ) (a), (5) ( a ) , ( 5 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.413436914 0.413436914 0 . 4 1 3 4 3 6 9 1 4
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.625917922
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ a \bigl[a [ a , 0 0 0 , a a a , 2 2 2 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 + 2 x {y}^2+a{x}{y}+a{y}={x}^{3}+2{x} y 2 + a x y + a y = x 3 + 2 x
100.1-a3
100.1-a
4 4 4
6 6 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.1
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
0.79925 0.79925 0 . 7 9 9 2 5
( a ) , ( 5 ) (a), (5) ( a ) , ( 5 )
1 1 1
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
3 3 3
0.826873828 0.826873828 0 . 8 2 6 8 7 3 8 2 8
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.625917922
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x 2 − x {y}^2={x}^{3}+{x}^{2}-{x} y 2 = x 3 + x 2 − x
100.1-a4
100.1-a
4 4 4
6 6 6
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
100.1
2 2 ⋅ 5 2 2^{2} \cdot 5^{2} 2 2 ⋅ 5 2
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
0.79925 0.79925 0 . 7 9 9 2 5
( a ) , ( 5 ) (a), (5) ( a ) , ( 5 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
3 3 3
0.275624609 0.275624609 0 . 2 7 5 6 2 4 6 0 9
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.625917922
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 41 -41 − 4 1 , − 116 ] -116\bigr] − 1 1 6 ]
y 2 = x 3 + x 2 − 41 x − 116 {y}^2={x}^{3}+{x}^{2}-41{x}-116 y 2 = x 3 + x 2 − 4 1 x − 1 1 6
108.2-a1
108.2-a
8 8 8
12 12 1 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
108.2
2 2 ⋅ 3 3 2^{2} \cdot 3^{3} 2 2 ⋅ 3 3
2 8 ⋅ 3 13 2^{8} \cdot 3^{13} 2 8 ⋅ 3 1 3
0.81478 0.81478 0 . 8 1 4 7 8
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.2
1 1 1
2 4 2^{4} 2 4
1 1 1
1.488316936 1.488316936 1 . 4 8 8 3 1 6 9 3 6
1.052398998
− 18202756 81 a − 253086988 81 -\frac{18202756}{81} a - \frac{253086988}{81} − 8 1 1 8 2 0 2 7 5 6 a − 8 1 2 5 3 0 8 6 9 8 8
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , 0 0 0 , − 59 a + 4 -59 a + 4 − 5 9 a + 4 , 122 a − 261 ] 122 a - 261\bigr] 1 2 2 a − 2 6 1 ]
y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 59 a + 4 ) x + 122 a − 261 {y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-59a+4\right){x}+122a-261 y 2 + a x y = x 3 + ( − a + 1 ) x 2 + ( − 5 9 a + 4 ) x + 1 2 2 a − 2 6 1
108.2-a2
108.2-a
8 8 8
12 12 1 2
Q ( − 2 ) \Q(\sqrt{-2}) Q ( − 2 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
108.2
2 2 ⋅ 3 3 2^{2} \cdot 3^{3} 2 2 ⋅ 3 3
2 8 ⋅ 3 13 2^{8} \cdot 3^{13} 2 8 ⋅ 3 1 3
0.81478 0.81478 0 . 8 1 4 7 8
( a ) , ( − a − 1 ) , ( a − 1 ) (a), (-a-1), (a-1) ( a ) , ( − a − 1 ) , ( a − 1 )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 ⋅ 3 2 2^{2} \cdot 3^{2} 2 2 ⋅ 3 2
1 1 1
1.488316936 1.488316936 1 . 4 8 8 3 1 6 9 3 6
1.052398998
18202756 81 a − 253086988 81 \frac{18202756}{81} a - \frac{253086988}{81} 8 1 1 8 2 0 2 7 5 6 a − 8 1 2 5 3 0 8 6 9 8 8
[ a \bigl[a [ a , − a + 1 -a + 1 − a + 1 , a a a , − 48 a + 49 -48 a + 49 − 4 8 a + 4 9 , 7 a + 265 ] 7 a + 265\bigr] 7 a + 2 6 5 ]
y 2 + a x y + a y = x 3 + ( − a + 1 ) x 2 + ( − 48 a + 49 ) x + 7 a + 265 {y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-48a+49\right){x}+7a+265 y 2 + a x y + a y = x 3 + ( − a + 1 ) x 2 + ( − 4 8 a + 4 9 ) x + 7 a + 2 6 5