Base field \(\Q(\sqrt{13}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).
Elliptic curves in class 1024.1-d over \(\Q(\sqrt{13}) \)
Isogeny class 1024.1-d contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
1024.1-d1 | \( \bigl[0\) , \( -1\) , \( 0\) , \( a - 2\) , \( a - 2\bigr] \) |
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)