Base field \(\Q(\sqrt{10}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 10 \); class number \(2\).
Elliptic curves in class 338.3-a over \(\Q(\sqrt{10}) \)
Isogeny class 338.3-a contains 2 curves linked by isogenies of degree 3.
Curve label | Weierstrass Coefficients |
---|---|
338.3-a1 | \( \bigl[a\) , \( 1\) , \( 0\) , \( -3 a + 8\) , \( -6 a + 9\bigr] \) |
338.3-a2 | \( \bigl[1\) , \( 1\) , \( a\) , \( 12 a - 39\) , \( 59 a - 189\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)