Base field \(\Q(\sqrt{14}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 14 \); class number \(1\).
Elliptic curves in class 14.1-a over \(\Q(\sqrt{14}) \)
Isogeny class 14.1-a contains 6 curves linked by isogenies of degrees dividing 18.
Rank
Rank: \( 1 \)Isogeny matrix
\(\left(\begin{array}{rrrrrr} 1 & 9 & 3 & 6 & 18 & 2 \\ 9 & 1 & 3 & 6 & 2 & 18 \\ 3 & 3 & 1 & 2 & 6 & 6 \\ 6 & 6 & 2 & 1 & 3 & 3 \\ 18 & 2 & 6 & 3 & 1 & 9 \\ 2 & 18 & 6 & 3 & 9 & 1 \end{array}\right)\)