Base field \(\Q(\sqrt{65}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).
Elliptic curves in class 128.5-j over \(\Q(\sqrt{65}) \)
Isogeny class 128.5-j contains only one elliptic curve.
Curve label | Weierstrass Coefficients |
---|---|
128.5-j1 | \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 118 a + 417\) , \( -352 a - 1243\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{r} 1 \end{array}\right)\)