Base field \(\Q(\sqrt{2}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).
Elliptic curves in class 3600.1-d over \(\Q(\sqrt{2}) \)
Isogeny class 3600.1-d contains 2 curves linked by isogenies of degree 2.
Curve label | Weierstrass Coefficients |
---|---|
3600.1-d1 | \( \bigl[a\) , \( a - 1\) , \( a\) , \( -3 a\) , \( -4 a + 1\bigr] \) |
3600.1-d2 | \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -13\) , \( -9 a + 2\bigr] \) |
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)